Single-molecule visualization of RecQ helicase reveals DNA melting, nucleation, and assembly are required for processive DNA unwinding
DNA helicases are motor proteins that unwind double-stranded DNA (dsDNA) to reveal single-stranded DNA (ssDNA) needed for many biological processes. The RecQ helicase is involved in repairing damage caused by DNA breaks and stalled replication forks via homologous recombination. Here, the helicase a...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-12, Vol.112 (50), p.E6852-E6861 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E6861 |
---|---|
container_issue | 50 |
container_start_page | E6852 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Rad, Behzad Forget, Anthony L. Baskin, Ronald J. Kowalczykowski, Stephen C. |
description | DNA helicases are motor proteins that unwind double-stranded DNA (dsDNA) to reveal single-stranded DNA (ssDNA) needed for many biological processes. The RecQ helicase is involved in repairing damage caused by DNA breaks and stalled replication forks via homologous recombination. Here, the helicase activity of RecQ was visualized on single molecules of DNA using a fluorescent sensor that directly detects ssDNA. By monitoring the formation and progression of individual unwinding forks, we observed that both the frequency of initiation and the rate of unwinding are highly dependent on RecQ concentration. We establish that unwinding forks can initiate internally by melting dsDNA and can proceed in both directions at up to 40–60 bp/s. The findings suggest that initiation requires a RecQ dimer, and that continued processive unwinding of several kilobases involves multiple monomers at the DNA unwinding fork. We propose a distinctive model wherein RecQ melts dsDNA internally to initiate unwinding and subsequently assembles at the fork into a distribution of multimeric species, each encompassing a broad distribution of rates, to unwind DNA. These studies define the species that promote resection of DNA, proofreading of homologous pairing, and migration of Holliday junctions, and they suggest that various functional forms of RecQ can be assembled that unwind at rates tailored to the diverse biological functions of RecQ helicase. |
doi_str_mv | 10.1073/pnas.1518028112 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1751219648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26466634</jstor_id><sourcerecordid>26466634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-f69a2db4f3808935077913c23f01dd338c862a47f330443b81f00405933330153</originalsourceid><addsrcrecordid>eNqNkktv1DAURiMEokNhzQpkiQ2Lpr1-OxukqpSHVIF4rS1P4rQeOfbUTgaVH8DvxukMQ2GFN174fEf3-t6qeorhGIOkJ-tg8jHmWAFRGJN71QJDg2vBGrhfLQCIrBUj7KB6lPMKABqu4GF1QARnIIlaVD-_uHDpbT1Eb9vJW7RxeTLe_TCjiwHFHn227Sd0Zb1rTbYo2Y01PqPXH07RYP1Y0kcoTK23t4EjZEKHTM52WPobZNKcuJ5csh3qY0LrFFubs9vYW8MUvrvQFcfj6kFftPbJ7j6svr05_3r2rr74-Pb92elF3XIhx7oXjSHdkvVUgWooBykbTFtCe8BdR6lqlSCGyZ5SYIwuFe4BGPCGlgOY08Pq1da7npaD7VobxmS8Xic3mHSjo3H675fgrvRl3GgmlOQNKYKXO0GK15PNox5cbq33Jtg4ZY2lpIpIKf8H5WUiuNRX0Bf_oKs4pVB-YqYwwY1gqlAnW6pNMedk-33dGPS8DnpeB_1nHUri-d129_zv-RcA7YA5uddhojnoc6H47Hi2RVZ5jOmOggkhKKO_AITUxL0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751219648</pqid></control><display><type>article</type><title>Single-molecule visualization of RecQ helicase reveals DNA melting, nucleation, and assembly are required for processive DNA unwinding</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rad, Behzad ; Forget, Anthony L. ; Baskin, Ronald J. ; Kowalczykowski, Stephen C.</creator><creatorcontrib>Rad, Behzad ; Forget, Anthony L. ; Baskin, Ronald J. ; Kowalczykowski, Stephen C.</creatorcontrib><description>DNA helicases are motor proteins that unwind double-stranded DNA (dsDNA) to reveal single-stranded DNA (ssDNA) needed for many biological processes. The RecQ helicase is involved in repairing damage caused by DNA breaks and stalled replication forks via homologous recombination. Here, the helicase activity of RecQ was visualized on single molecules of DNA using a fluorescent sensor that directly detects ssDNA. By monitoring the formation and progression of individual unwinding forks, we observed that both the frequency of initiation and the rate of unwinding are highly dependent on RecQ concentration. We establish that unwinding forks can initiate internally by melting dsDNA and can proceed in both directions at up to 40–60 bp/s. The findings suggest that initiation requires a RecQ dimer, and that continued processive unwinding of several kilobases involves multiple monomers at the DNA unwinding fork. We propose a distinctive model wherein RecQ melts dsDNA internally to initiate unwinding and subsequently assembles at the fork into a distribution of multimeric species, each encompassing a broad distribution of rates, to unwind DNA. These studies define the species that promote resection of DNA, proofreading of homologous pairing, and migration of Holliday junctions, and they suggest that various functional forms of RecQ can be assembled that unwind at rates tailored to the diverse biological functions of RecQ helicase.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1518028112</identifier><identifier>PMID: 26540728</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteriophage lambda - genetics ; Bacteriophages ; Biochemistry ; Biological Sciences ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA repair ; DNA, Viral - chemistry ; Dyes ; Escherichia coli ; Fluorescence ; Fluorescent Dyes - chemistry ; Melting ; Microscopy - methods ; Molecular biology ; Molecules ; Monomers ; Nucleic Acid Conformation ; PNAS Plus ; Pumps ; RecQ Helicases - chemistry ; RecQ Helicases - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-12, Vol.112 (50), p.E6852-E6861</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 15, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-f69a2db4f3808935077913c23f01dd338c862a47f330443b81f00405933330153</citedby><cites>FETCH-LOGICAL-c567t-f69a2db4f3808935077913c23f01dd338c862a47f330443b81f00405933330153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/50.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26466634$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26466634$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26540728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rad, Behzad</creatorcontrib><creatorcontrib>Forget, Anthony L.</creatorcontrib><creatorcontrib>Baskin, Ronald J.</creatorcontrib><creatorcontrib>Kowalczykowski, Stephen C.</creatorcontrib><title>Single-molecule visualization of RecQ helicase reveals DNA melting, nucleation, and assembly are required for processive DNA unwinding</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>DNA helicases are motor proteins that unwind double-stranded DNA (dsDNA) to reveal single-stranded DNA (ssDNA) needed for many biological processes. The RecQ helicase is involved in repairing damage caused by DNA breaks and stalled replication forks via homologous recombination. Here, the helicase activity of RecQ was visualized on single molecules of DNA using a fluorescent sensor that directly detects ssDNA. By monitoring the formation and progression of individual unwinding forks, we observed that both the frequency of initiation and the rate of unwinding are highly dependent on RecQ concentration. We establish that unwinding forks can initiate internally by melting dsDNA and can proceed in both directions at up to 40–60 bp/s. The findings suggest that initiation requires a RecQ dimer, and that continued processive unwinding of several kilobases involves multiple monomers at the DNA unwinding fork. We propose a distinctive model wherein RecQ melts dsDNA internally to initiate unwinding and subsequently assembles at the fork into a distribution of multimeric species, each encompassing a broad distribution of rates, to unwind DNA. These studies define the species that promote resection of DNA, proofreading of homologous pairing, and migration of Holliday junctions, and they suggest that various functional forms of RecQ can be assembled that unwind at rates tailored to the diverse biological functions of RecQ helicase.</description><subject>Bacteriophage lambda - genetics</subject><subject>Bacteriophages</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>DNA, Viral - chemistry</subject><subject>Dyes</subject><subject>Escherichia coli</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Melting</subject><subject>Microscopy - methods</subject><subject>Molecular biology</subject><subject>Molecules</subject><subject>Monomers</subject><subject>Nucleic Acid Conformation</subject><subject>PNAS Plus</subject><subject>Pumps</subject><subject>RecQ Helicases - chemistry</subject><subject>RecQ Helicases - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkktv1DAURiMEokNhzQpkiQ2Lpr1-OxukqpSHVIF4rS1P4rQeOfbUTgaVH8DvxukMQ2GFN174fEf3-t6qeorhGIOkJ-tg8jHmWAFRGJN71QJDg2vBGrhfLQCIrBUj7KB6lPMKABqu4GF1QARnIIlaVD-_uHDpbT1Eb9vJW7RxeTLe_TCjiwHFHn227Sd0Zb1rTbYo2Y01PqPXH07RYP1Y0kcoTK23t4EjZEKHTM52WPobZNKcuJ5csh3qY0LrFFubs9vYW8MUvrvQFcfj6kFftPbJ7j6svr05_3r2rr74-Pb92elF3XIhx7oXjSHdkvVUgWooBykbTFtCe8BdR6lqlSCGyZ5SYIwuFe4BGPCGlgOY08Pq1da7npaD7VobxmS8Xic3mHSjo3H675fgrvRl3GgmlOQNKYKXO0GK15PNox5cbq33Jtg4ZY2lpIpIKf8H5WUiuNRX0Bf_oKs4pVB-YqYwwY1gqlAnW6pNMedk-33dGPS8DnpeB_1nHUri-d129_zv-RcA7YA5uddhojnoc6H47Hi2RVZ5jOmOggkhKKO_AITUxL0</recordid><startdate>20151215</startdate><enddate>20151215</enddate><creator>Rad, Behzad</creator><creator>Forget, Anthony L.</creator><creator>Baskin, Ronald J.</creator><creator>Kowalczykowski, Stephen C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151215</creationdate><title>Single-molecule visualization of RecQ helicase reveals DNA melting, nucleation, and assembly are required for processive DNA unwinding</title><author>Rad, Behzad ; Forget, Anthony L. ; Baskin, Ronald J. ; Kowalczykowski, Stephen C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-f69a2db4f3808935077913c23f01dd338c862a47f330443b81f00405933330153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bacteriophage lambda - genetics</topic><topic>Bacteriophages</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>DNA, Viral - chemistry</topic><topic>Dyes</topic><topic>Escherichia coli</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Melting</topic><topic>Microscopy - methods</topic><topic>Molecular biology</topic><topic>Molecules</topic><topic>Monomers</topic><topic>Nucleic Acid Conformation</topic><topic>PNAS Plus</topic><topic>Pumps</topic><topic>RecQ Helicases - chemistry</topic><topic>RecQ Helicases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rad, Behzad</creatorcontrib><creatorcontrib>Forget, Anthony L.</creatorcontrib><creatorcontrib>Baskin, Ronald J.</creatorcontrib><creatorcontrib>Kowalczykowski, Stephen C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rad, Behzad</au><au>Forget, Anthony L.</au><au>Baskin, Ronald J.</au><au>Kowalczykowski, Stephen C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-molecule visualization of RecQ helicase reveals DNA melting, nucleation, and assembly are required for processive DNA unwinding</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-12-15</date><risdate>2015</risdate><volume>112</volume><issue>50</issue><spage>E6852</spage><epage>E6861</epage><pages>E6852-E6861</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>DNA helicases are motor proteins that unwind double-stranded DNA (dsDNA) to reveal single-stranded DNA (ssDNA) needed for many biological processes. The RecQ helicase is involved in repairing damage caused by DNA breaks and stalled replication forks via homologous recombination. Here, the helicase activity of RecQ was visualized on single molecules of DNA using a fluorescent sensor that directly detects ssDNA. By monitoring the formation and progression of individual unwinding forks, we observed that both the frequency of initiation and the rate of unwinding are highly dependent on RecQ concentration. We establish that unwinding forks can initiate internally by melting dsDNA and can proceed in both directions at up to 40–60 bp/s. The findings suggest that initiation requires a RecQ dimer, and that continued processive unwinding of several kilobases involves multiple monomers at the DNA unwinding fork. We propose a distinctive model wherein RecQ melts dsDNA internally to initiate unwinding and subsequently assembles at the fork into a distribution of multimeric species, each encompassing a broad distribution of rates, to unwind DNA. These studies define the species that promote resection of DNA, proofreading of homologous pairing, and migration of Holliday junctions, and they suggest that various functional forms of RecQ can be assembled that unwind at rates tailored to the diverse biological functions of RecQ helicase.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26540728</pmid><doi>10.1073/pnas.1518028112</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-12, Vol.112 (50), p.E6852-E6861 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1751219648 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bacteriophage lambda - genetics Bacteriophages Biochemistry Biological Sciences Deoxyribonucleic acid DNA DNA damage DNA repair DNA, Viral - chemistry Dyes Escherichia coli Fluorescence Fluorescent Dyes - chemistry Melting Microscopy - methods Molecular biology Molecules Monomers Nucleic Acid Conformation PNAS Plus Pumps RecQ Helicases - chemistry RecQ Helicases - metabolism |
title | Single-molecule visualization of RecQ helicase reveals DNA melting, nucleation, and assembly are required for processive DNA unwinding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-molecule%20visualization%20of%20RecQ%20helicase%20reveals%20DNA%20melting,%20nucleation,%20and%20assembly%20are%20required%20for%20processive%20DNA%20unwinding&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rad,%20Behzad&rft.date=2015-12-15&rft.volume=112&rft.issue=50&rft.spage=E6852&rft.epage=E6861&rft.pages=E6852-E6861&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1518028112&rft_dat=%3Cjstor_proqu%3E26466634%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751219648&rft_id=info:pmid/26540728&rft_jstor_id=26466634&rfr_iscdi=true |