Interference-plus-Noise Covariance Matrix Reconstruction via Spatial Power Spectrum Sampling for Robust Adaptive Beamforming
Recently, a robust adaptive beamforming (RAB) technique based on interference-plus-noise covariance (INC) matrix reconstruction has been proposed, which utilizes the Capon spectrum estimator integrated over a region separated from the direction of the desired signal. Inspired by the sampling and rec...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2016-01, Vol.23 (1), p.121-125 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125 |
---|---|
container_issue | 1 |
container_start_page | 121 |
container_title | IEEE signal processing letters |
container_volume | 23 |
creator | Zhang, Zhenyu Liu, Wei Leng, Wen Wang, Anguo Shi, Heping |
description | Recently, a robust adaptive beamforming (RAB) technique based on interference-plus-noise covariance (INC) matrix reconstruction has been proposed, which utilizes the Capon spectrum estimator integrated over a region separated from the direction of the desired signal. Inspired by the sampling and reconstruction idea, in this paper, a novel method named spatial power spectrum sampling (SPSS) is proposed to reconstruct the INC matrix more efficiently, with the corresponding beamforming algorithm developed, where the covariance matrix taper (CMT) technique is employed to further improve its performance. Simulation results are provided to demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1109/LSP.2015.2504954 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1750113532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7345553</ieee_id><sourcerecordid>3899204381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-2e68e405ad0881d99b93057d1c653545542ff8081e6b5f8f0be82bc0b33b16003</originalsourceid><addsrcrecordid>eNpdkctPwzAMxisEEuNxR-ISiQuXDidpuvQ4Jh6TxkMMzlWauSiobUqSDpD44wnaxIGT7c8_W7a-JDmhMKYUiovF8nHMgIoxE5AVIttJRlQImTKe092YwwTSogC5nxx4_wYAkkoxSr7nXUBXo8NOY9o3g0_vrfFIZnatnFFRJXcqOPNJnlDbzgc36GBsR9ZGkWWvglENebQf6GKFOrZbslRt35juldTWkSdbDT6Q6Ur1wayRXKJqo97G_lGyV6vG4_E2HiYv11fPs9t08XAzn00XqeZ5HlKGucQMhFqBlHRVFFXBQUxWVOeCi0yIjNW1jA9hXola1lChZJWGivOK5gD8MDnf7O2dfR_Qh7I1XmPTqA7t4Es6KTjLGGU0omf_0Dc7uC5eFykBlHLBWaRgQ2lnvXdYl70zrXJfJYXy144y2lH-2lFu7Ygjp5sRg4h_-ITH8wXnP6ePhuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750113532</pqid></control><display><type>article</type><title>Interference-plus-Noise Covariance Matrix Reconstruction via Spatial Power Spectrum Sampling for Robust Adaptive Beamforming</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Zhenyu ; Liu, Wei ; Leng, Wen ; Wang, Anguo ; Shi, Heping</creator><creatorcontrib>Zhang, Zhenyu ; Liu, Wei ; Leng, Wen ; Wang, Anguo ; Shi, Heping</creatorcontrib><description>Recently, a robust adaptive beamforming (RAB) technique based on interference-plus-noise covariance (INC) matrix reconstruction has been proposed, which utilizes the Capon spectrum estimator integrated over a region separated from the direction of the desired signal. Inspired by the sampling and reconstruction idea, in this paper, a novel method named spatial power spectrum sampling (SPSS) is proposed to reconstruct the INC matrix more efficiently, with the corresponding beamforming algorithm developed, where the covariance matrix taper (CMT) technique is employed to further improve its performance. Simulation results are provided to demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2015.2504954</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation methods ; Array signal processing ; Arrays ; Beamforming ; Computer simulation ; Covariance ; Covariance matrices ; Covariance matrix ; Covariance matrix reconstruction ; Estimators ; Image reconstruction ; matrix taper ; Reconstruction ; robust beamforming ; Robustness ; Sampling ; spatial power spectrum sampling ; Spectral analysis</subject><ispartof>IEEE signal processing letters, 2016-01, Vol.23 (1), p.121-125</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-2e68e405ad0881d99b93057d1c653545542ff8081e6b5f8f0be82bc0b33b16003</citedby><cites>FETCH-LOGICAL-c366t-2e68e405ad0881d99b93057d1c653545542ff8081e6b5f8f0be82bc0b33b16003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7345553$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7345553$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Zhenyu</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Leng, Wen</creatorcontrib><creatorcontrib>Wang, Anguo</creatorcontrib><creatorcontrib>Shi, Heping</creatorcontrib><title>Interference-plus-Noise Covariance Matrix Reconstruction via Spatial Power Spectrum Sampling for Robust Adaptive Beamforming</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Recently, a robust adaptive beamforming (RAB) technique based on interference-plus-noise covariance (INC) matrix reconstruction has been proposed, which utilizes the Capon spectrum estimator integrated over a region separated from the direction of the desired signal. Inspired by the sampling and reconstruction idea, in this paper, a novel method named spatial power spectrum sampling (SPSS) is proposed to reconstruct the INC matrix more efficiently, with the corresponding beamforming algorithm developed, where the covariance matrix taper (CMT) technique is employed to further improve its performance. Simulation results are provided to demonstrate the effectiveness of the proposed method.</description><subject>Algorithms</subject><subject>Approximation methods</subject><subject>Array signal processing</subject><subject>Arrays</subject><subject>Beamforming</subject><subject>Computer simulation</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Covariance matrix reconstruction</subject><subject>Estimators</subject><subject>Image reconstruction</subject><subject>matrix taper</subject><subject>Reconstruction</subject><subject>robust beamforming</subject><subject>Robustness</subject><subject>Sampling</subject><subject>spatial power spectrum sampling</subject><subject>Spectral analysis</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkctPwzAMxisEEuNxR-ISiQuXDidpuvQ4Jh6TxkMMzlWauSiobUqSDpD44wnaxIGT7c8_W7a-JDmhMKYUiovF8nHMgIoxE5AVIttJRlQImTKe092YwwTSogC5nxx4_wYAkkoxSr7nXUBXo8NOY9o3g0_vrfFIZnatnFFRJXcqOPNJnlDbzgc36GBsR9ZGkWWvglENebQf6GKFOrZbslRt35juldTWkSdbDT6Q6Ur1wayRXKJqo97G_lGyV6vG4_E2HiYv11fPs9t08XAzn00XqeZ5HlKGucQMhFqBlHRVFFXBQUxWVOeCi0yIjNW1jA9hXola1lChZJWGivOK5gD8MDnf7O2dfR_Qh7I1XmPTqA7t4Es6KTjLGGU0omf_0Dc7uC5eFykBlHLBWaRgQ2lnvXdYl70zrXJfJYXy144y2lH-2lFu7Ygjp5sRg4h_-ITH8wXnP6ePhuc</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Zhang, Zhenyu</creator><creator>Liu, Wei</creator><creator>Leng, Wen</creator><creator>Wang, Anguo</creator><creator>Shi, Heping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160101</creationdate><title>Interference-plus-Noise Covariance Matrix Reconstruction via Spatial Power Spectrum Sampling for Robust Adaptive Beamforming</title><author>Zhang, Zhenyu ; Liu, Wei ; Leng, Wen ; Wang, Anguo ; Shi, Heping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-2e68e405ad0881d99b93057d1c653545542ff8081e6b5f8f0be82bc0b33b16003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation methods</topic><topic>Array signal processing</topic><topic>Arrays</topic><topic>Beamforming</topic><topic>Computer simulation</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Covariance matrix reconstruction</topic><topic>Estimators</topic><topic>Image reconstruction</topic><topic>matrix taper</topic><topic>Reconstruction</topic><topic>robust beamforming</topic><topic>Robustness</topic><topic>Sampling</topic><topic>spatial power spectrum sampling</topic><topic>Spectral analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhenyu</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Leng, Wen</creatorcontrib><creatorcontrib>Wang, Anguo</creatorcontrib><creatorcontrib>Shi, Heping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Zhenyu</au><au>Liu, Wei</au><au>Leng, Wen</au><au>Wang, Anguo</au><au>Shi, Heping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interference-plus-Noise Covariance Matrix Reconstruction via Spatial Power Spectrum Sampling for Robust Adaptive Beamforming</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>23</volume><issue>1</issue><spage>121</spage><epage>125</epage><pages>121-125</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Recently, a robust adaptive beamforming (RAB) technique based on interference-plus-noise covariance (INC) matrix reconstruction has been proposed, which utilizes the Capon spectrum estimator integrated over a region separated from the direction of the desired signal. Inspired by the sampling and reconstruction idea, in this paper, a novel method named spatial power spectrum sampling (SPSS) is proposed to reconstruct the INC matrix more efficiently, with the corresponding beamforming algorithm developed, where the covariance matrix taper (CMT) technique is employed to further improve its performance. Simulation results are provided to demonstrate the effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2015.2504954</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2016-01, Vol.23 (1), p.121-125 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_proquest_journals_1750113532 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Approximation methods Array signal processing Arrays Beamforming Computer simulation Covariance Covariance matrices Covariance matrix Covariance matrix reconstruction Estimators Image reconstruction matrix taper Reconstruction robust beamforming Robustness Sampling spatial power spectrum sampling Spectral analysis |
title | Interference-plus-Noise Covariance Matrix Reconstruction via Spatial Power Spectrum Sampling for Robust Adaptive Beamforming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interference-plus-Noise%20Covariance%20Matrix%20Reconstruction%20via%20Spatial%20Power%20Spectrum%20Sampling%20for%20Robust%20Adaptive%20Beamforming&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Zhang,%20Zhenyu&rft.date=2016-01-01&rft.volume=23&rft.issue=1&rft.spage=121&rft.epage=125&rft.pages=121-125&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2015.2504954&rft_dat=%3Cproquest_RIE%3E3899204381%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1750113532&rft_id=info:pmid/&rft_ieee_id=7345553&rfr_iscdi=true |