Interference-plus-Noise Covariance Matrix Reconstruction via Spatial Power Spectrum Sampling for Robust Adaptive Beamforming

Recently, a robust adaptive beamforming (RAB) technique based on interference-plus-noise covariance (INC) matrix reconstruction has been proposed, which utilizes the Capon spectrum estimator integrated over a region separated from the direction of the desired signal. Inspired by the sampling and rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2016-01, Vol.23 (1), p.121-125
Hauptverfasser: Zhang, Zhenyu, Liu, Wei, Leng, Wen, Wang, Anguo, Shi, Heping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue 1
container_start_page 121
container_title IEEE signal processing letters
container_volume 23
creator Zhang, Zhenyu
Liu, Wei
Leng, Wen
Wang, Anguo
Shi, Heping
description Recently, a robust adaptive beamforming (RAB) technique based on interference-plus-noise covariance (INC) matrix reconstruction has been proposed, which utilizes the Capon spectrum estimator integrated over a region separated from the direction of the desired signal. Inspired by the sampling and reconstruction idea, in this paper, a novel method named spatial power spectrum sampling (SPSS) is proposed to reconstruct the INC matrix more efficiently, with the corresponding beamforming algorithm developed, where the covariance matrix taper (CMT) technique is employed to further improve its performance. Simulation results are provided to demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1109/LSP.2015.2504954
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1750113532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7345553</ieee_id><sourcerecordid>3899204381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-2e68e405ad0881d99b93057d1c653545542ff8081e6b5f8f0be82bc0b33b16003</originalsourceid><addsrcrecordid>eNpdkctPwzAMxisEEuNxR-ISiQuXDidpuvQ4Jh6TxkMMzlWauSiobUqSDpD44wnaxIGT7c8_W7a-JDmhMKYUiovF8nHMgIoxE5AVIttJRlQImTKe092YwwTSogC5nxx4_wYAkkoxSr7nXUBXo8NOY9o3g0_vrfFIZnatnFFRJXcqOPNJnlDbzgc36GBsR9ZGkWWvglENebQf6GKFOrZbslRt35juldTWkSdbDT6Q6Ur1wayRXKJqo97G_lGyV6vG4_E2HiYv11fPs9t08XAzn00XqeZ5HlKGucQMhFqBlHRVFFXBQUxWVOeCi0yIjNW1jA9hXola1lChZJWGivOK5gD8MDnf7O2dfR_Qh7I1XmPTqA7t4Es6KTjLGGU0omf_0Dc7uC5eFykBlHLBWaRgQ2lnvXdYl70zrXJfJYXy144y2lH-2lFu7Ygjp5sRg4h_-ITH8wXnP6ePhuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750113532</pqid></control><display><type>article</type><title>Interference-plus-Noise Covariance Matrix Reconstruction via Spatial Power Spectrum Sampling for Robust Adaptive Beamforming</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Zhenyu ; Liu, Wei ; Leng, Wen ; Wang, Anguo ; Shi, Heping</creator><creatorcontrib>Zhang, Zhenyu ; Liu, Wei ; Leng, Wen ; Wang, Anguo ; Shi, Heping</creatorcontrib><description>Recently, a robust adaptive beamforming (RAB) technique based on interference-plus-noise covariance (INC) matrix reconstruction has been proposed, which utilizes the Capon spectrum estimator integrated over a region separated from the direction of the desired signal. Inspired by the sampling and reconstruction idea, in this paper, a novel method named spatial power spectrum sampling (SPSS) is proposed to reconstruct the INC matrix more efficiently, with the corresponding beamforming algorithm developed, where the covariance matrix taper (CMT) technique is employed to further improve its performance. Simulation results are provided to demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2015.2504954</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation methods ; Array signal processing ; Arrays ; Beamforming ; Computer simulation ; Covariance ; Covariance matrices ; Covariance matrix ; Covariance matrix reconstruction ; Estimators ; Image reconstruction ; matrix taper ; Reconstruction ; robust beamforming ; Robustness ; Sampling ; spatial power spectrum sampling ; Spectral analysis</subject><ispartof>IEEE signal processing letters, 2016-01, Vol.23 (1), p.121-125</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-2e68e405ad0881d99b93057d1c653545542ff8081e6b5f8f0be82bc0b33b16003</citedby><cites>FETCH-LOGICAL-c366t-2e68e405ad0881d99b93057d1c653545542ff8081e6b5f8f0be82bc0b33b16003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7345553$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7345553$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Zhenyu</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Leng, Wen</creatorcontrib><creatorcontrib>Wang, Anguo</creatorcontrib><creatorcontrib>Shi, Heping</creatorcontrib><title>Interference-plus-Noise Covariance Matrix Reconstruction via Spatial Power Spectrum Sampling for Robust Adaptive Beamforming</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Recently, a robust adaptive beamforming (RAB) technique based on interference-plus-noise covariance (INC) matrix reconstruction has been proposed, which utilizes the Capon spectrum estimator integrated over a region separated from the direction of the desired signal. Inspired by the sampling and reconstruction idea, in this paper, a novel method named spatial power spectrum sampling (SPSS) is proposed to reconstruct the INC matrix more efficiently, with the corresponding beamforming algorithm developed, where the covariance matrix taper (CMT) technique is employed to further improve its performance. Simulation results are provided to demonstrate the effectiveness of the proposed method.</description><subject>Algorithms</subject><subject>Approximation methods</subject><subject>Array signal processing</subject><subject>Arrays</subject><subject>Beamforming</subject><subject>Computer simulation</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Covariance matrix reconstruction</subject><subject>Estimators</subject><subject>Image reconstruction</subject><subject>matrix taper</subject><subject>Reconstruction</subject><subject>robust beamforming</subject><subject>Robustness</subject><subject>Sampling</subject><subject>spatial power spectrum sampling</subject><subject>Spectral analysis</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkctPwzAMxisEEuNxR-ISiQuXDidpuvQ4Jh6TxkMMzlWauSiobUqSDpD44wnaxIGT7c8_W7a-JDmhMKYUiovF8nHMgIoxE5AVIttJRlQImTKe092YwwTSogC5nxx4_wYAkkoxSr7nXUBXo8NOY9o3g0_vrfFIZnatnFFRJXcqOPNJnlDbzgc36GBsR9ZGkWWvglENebQf6GKFOrZbslRt35juldTWkSdbDT6Q6Ur1wayRXKJqo97G_lGyV6vG4_E2HiYv11fPs9t08XAzn00XqeZ5HlKGucQMhFqBlHRVFFXBQUxWVOeCi0yIjNW1jA9hXola1lChZJWGivOK5gD8MDnf7O2dfR_Qh7I1XmPTqA7t4Es6KTjLGGU0omf_0Dc7uC5eFykBlHLBWaRgQ2lnvXdYl70zrXJfJYXy144y2lH-2lFu7Ygjp5sRg4h_-ITH8wXnP6ePhuc</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Zhang, Zhenyu</creator><creator>Liu, Wei</creator><creator>Leng, Wen</creator><creator>Wang, Anguo</creator><creator>Shi, Heping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160101</creationdate><title>Interference-plus-Noise Covariance Matrix Reconstruction via Spatial Power Spectrum Sampling for Robust Adaptive Beamforming</title><author>Zhang, Zhenyu ; Liu, Wei ; Leng, Wen ; Wang, Anguo ; Shi, Heping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-2e68e405ad0881d99b93057d1c653545542ff8081e6b5f8f0be82bc0b33b16003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation methods</topic><topic>Array signal processing</topic><topic>Arrays</topic><topic>Beamforming</topic><topic>Computer simulation</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Covariance matrix reconstruction</topic><topic>Estimators</topic><topic>Image reconstruction</topic><topic>matrix taper</topic><topic>Reconstruction</topic><topic>robust beamforming</topic><topic>Robustness</topic><topic>Sampling</topic><topic>spatial power spectrum sampling</topic><topic>Spectral analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhenyu</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Leng, Wen</creatorcontrib><creatorcontrib>Wang, Anguo</creatorcontrib><creatorcontrib>Shi, Heping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Zhenyu</au><au>Liu, Wei</au><au>Leng, Wen</au><au>Wang, Anguo</au><au>Shi, Heping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interference-plus-Noise Covariance Matrix Reconstruction via Spatial Power Spectrum Sampling for Robust Adaptive Beamforming</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>23</volume><issue>1</issue><spage>121</spage><epage>125</epage><pages>121-125</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Recently, a robust adaptive beamforming (RAB) technique based on interference-plus-noise covariance (INC) matrix reconstruction has been proposed, which utilizes the Capon spectrum estimator integrated over a region separated from the direction of the desired signal. Inspired by the sampling and reconstruction idea, in this paper, a novel method named spatial power spectrum sampling (SPSS) is proposed to reconstruct the INC matrix more efficiently, with the corresponding beamforming algorithm developed, where the covariance matrix taper (CMT) technique is employed to further improve its performance. Simulation results are provided to demonstrate the effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2015.2504954</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2016-01, Vol.23 (1), p.121-125
issn 1070-9908
1558-2361
language eng
recordid cdi_proquest_journals_1750113532
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation methods
Array signal processing
Arrays
Beamforming
Computer simulation
Covariance
Covariance matrices
Covariance matrix
Covariance matrix reconstruction
Estimators
Image reconstruction
matrix taper
Reconstruction
robust beamforming
Robustness
Sampling
spatial power spectrum sampling
Spectral analysis
title Interference-plus-Noise Covariance Matrix Reconstruction via Spatial Power Spectrum Sampling for Robust Adaptive Beamforming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interference-plus-Noise%20Covariance%20Matrix%20Reconstruction%20via%20Spatial%20Power%20Spectrum%20Sampling%20for%20Robust%20Adaptive%20Beamforming&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Zhang,%20Zhenyu&rft.date=2016-01-01&rft.volume=23&rft.issue=1&rft.spage=121&rft.epage=125&rft.pages=121-125&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2015.2504954&rft_dat=%3Cproquest_RIE%3E3899204381%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1750113532&rft_id=info:pmid/&rft_ieee_id=7345553&rfr_iscdi=true