Physical response of hyperelastic models for composite materials and soft tissues

A hyperelastic model must not only characterize the mechanical response of a composite material such as soft tissue, but also ensure numerical stability by a feasible set of material parameters. Apart from the well-known ill-conditioning problem caused by the incompressibility constraint, the paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Asia Pacific journal on computational engineering 2015-12, Vol.2 (1), p.1, Article 3
Hauptverfasser: Duong, Minh Tuan, Nguyen, Nhu Huynh, Staat, Manfred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1
container_title Asia Pacific journal on computational engineering
container_volume 2
creator Duong, Minh Tuan
Nguyen, Nhu Huynh
Staat, Manfred
description A hyperelastic model must not only characterize the mechanical response of a composite material such as soft tissue, but also ensure numerical stability by a feasible set of material parameters. Apart from the well-known ill-conditioning problem caused by the incompressibility constraint, the paper indicates another ill-conditioning occurring in any general fibre-reinforced material model for tubular organs when unbalance between the fibre strain energy and the matrix strain energy becomes too large. Specifically, although the Holzapfel model is polyconvex, this problem can be observed as an unphysical behaviour in a physiological deformation range of a tissue such as arterial wall and intestine by thickening in the thickness direction associated with a volume growth of a specimen in a tension test. Particularly, the same problem for a polyconvex modified Fung-type model with the matrix characterized by the neo-Hookean model has been discussed for the first time. By investigating the influence of the shear modulus in these two models, we not only prove the cause of the ill-conditioning but also propose a solution to control the unbalance in the strain energy. The numerical results show significant enhancement of the model stability in overcoming the unphysical deformation.
doi_str_mv 10.1186/s40540-015-0015-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1749607130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3897226121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204x-9108697763cf6f19616953b878310310b58bbb0811eba6b484b4560334e943b23</originalsourceid><addsrcrecordid>eNp1UN1LwzAQD6Lg0P0BvgV8rt41ado-yvALBiroc0i6xHWsTc11sP33ZtSHvQjH3XH8Po4fYzcId4iVuicJhYQMsMjg2PZnbJZjrTJEpc5P9ks2J9pAAuWFylHM2Mf7-kBtY7Y8OhpCT44Hz9eHwUW3NTS2De_Cym2J-xB5E7ohUDs63pnRxdaku-lXnIIf-dgS7Rxdswuf7m7-N6_Y19Pj5-IlW749vy4ellmTg9xnNUKl6rJUovHKpwdR1YWwVVkJhFS2qKy1UCE6a5SVlbSyUCCEdLUUNhdX7HbSHWL4Sb6j3oRd7JOlxlLWCkoUkFA4oZoYiKLzeohtZ-JBI-hjeHoKT6fc9DE8vU-cfOJQwvbfLp4o_0v6BXEjcSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1749607130</pqid></control><display><type>article</type><title>Physical response of hyperelastic models for composite materials and soft tissues</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Duong, Minh Tuan ; Nguyen, Nhu Huynh ; Staat, Manfred</creator><creatorcontrib>Duong, Minh Tuan ; Nguyen, Nhu Huynh ; Staat, Manfred</creatorcontrib><description>A hyperelastic model must not only characterize the mechanical response of a composite material such as soft tissue, but also ensure numerical stability by a feasible set of material parameters. Apart from the well-known ill-conditioning problem caused by the incompressibility constraint, the paper indicates another ill-conditioning occurring in any general fibre-reinforced material model for tubular organs when unbalance between the fibre strain energy and the matrix strain energy becomes too large. Specifically, although the Holzapfel model is polyconvex, this problem can be observed as an unphysical behaviour in a physiological deformation range of a tissue such as arterial wall and intestine by thickening in the thickness direction associated with a volume growth of a specimen in a tension test. Particularly, the same problem for a polyconvex modified Fung-type model with the matrix characterized by the neo-Hookean model has been discussed for the first time. By investigating the influence of the shear modulus in these two models, we not only prove the cause of the ill-conditioning but also propose a solution to control the unbalance in the strain energy. The numerical results show significant enhancement of the model stability in overcoming the unphysical deformation.</description><identifier>ISSN: 2196-1166</identifier><identifier>EISSN: 2196-1166</identifier><identifier>DOI: 10.1186/s40540-015-0015-x</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Classical and Continuum Physics ; Composite materials ; Computational Science and Engineering ; Engineering ; Mathematical Applications in the Physical Sciences ; Theoretical and Applied Mechanics</subject><ispartof>Asia Pacific journal on computational engineering, 2015-12, Vol.2 (1), p.1, Article 3</ispartof><rights>Duong et al. 2015</rights><rights>The Author(s) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c204x-9108697763cf6f19616953b878310310b58bbb0811eba6b484b4560334e943b23</citedby><cites>FETCH-LOGICAL-c204x-9108697763cf6f19616953b878310310b58bbb0811eba6b484b4560334e943b23</cites><orcidid>0000-0003-4363-6570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1186/s40540-015-0015-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1186/s40540-015-0015-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41099,42168,51554</link.rule.ids></links><search><creatorcontrib>Duong, Minh Tuan</creatorcontrib><creatorcontrib>Nguyen, Nhu Huynh</creatorcontrib><creatorcontrib>Staat, Manfred</creatorcontrib><title>Physical response of hyperelastic models for composite materials and soft tissues</title><title>Asia Pacific journal on computational engineering</title><addtitle>Asia Pac. J. Comput. Engin</addtitle><description>A hyperelastic model must not only characterize the mechanical response of a composite material such as soft tissue, but also ensure numerical stability by a feasible set of material parameters. Apart from the well-known ill-conditioning problem caused by the incompressibility constraint, the paper indicates another ill-conditioning occurring in any general fibre-reinforced material model for tubular organs when unbalance between the fibre strain energy and the matrix strain energy becomes too large. Specifically, although the Holzapfel model is polyconvex, this problem can be observed as an unphysical behaviour in a physiological deformation range of a tissue such as arterial wall and intestine by thickening in the thickness direction associated with a volume growth of a specimen in a tension test. Particularly, the same problem for a polyconvex modified Fung-type model with the matrix characterized by the neo-Hookean model has been discussed for the first time. By investigating the influence of the shear modulus in these two models, we not only prove the cause of the ill-conditioning but also propose a solution to control the unbalance in the strain energy. The numerical results show significant enhancement of the model stability in overcoming the unphysical deformation.</description><subject>Classical and Continuum Physics</subject><subject>Composite materials</subject><subject>Computational Science and Engineering</subject><subject>Engineering</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Theoretical and Applied Mechanics</subject><issn>2196-1166</issn><issn>2196-1166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UN1LwzAQD6Lg0P0BvgV8rt41ado-yvALBiroc0i6xHWsTc11sP33ZtSHvQjH3XH8Po4fYzcId4iVuicJhYQMsMjg2PZnbJZjrTJEpc5P9ks2J9pAAuWFylHM2Mf7-kBtY7Y8OhpCT44Hz9eHwUW3NTS2De_Cym2J-xB5E7ohUDs63pnRxdaku-lXnIIf-dgS7Rxdswuf7m7-N6_Y19Pj5-IlW749vy4ellmTg9xnNUKl6rJUovHKpwdR1YWwVVkJhFS2qKy1UCE6a5SVlbSyUCCEdLUUNhdX7HbSHWL4Sb6j3oRd7JOlxlLWCkoUkFA4oZoYiKLzeohtZ-JBI-hjeHoKT6fc9DE8vU-cfOJQwvbfLp4o_0v6BXEjcSA</recordid><startdate>20151208</startdate><enddate>20151208</enddate><creator>Duong, Minh Tuan</creator><creator>Nguyen, Nhu Huynh</creator><creator>Staat, Manfred</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4363-6570</orcidid></search><sort><creationdate>20151208</creationdate><title>Physical response of hyperelastic models for composite materials and soft tissues</title><author>Duong, Minh Tuan ; Nguyen, Nhu Huynh ; Staat, Manfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204x-9108697763cf6f19616953b878310310b58bbb0811eba6b484b4560334e943b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical and Continuum Physics</topic><topic>Composite materials</topic><topic>Computational Science and Engineering</topic><topic>Engineering</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duong, Minh Tuan</creatorcontrib><creatorcontrib>Nguyen, Nhu Huynh</creatorcontrib><creatorcontrib>Staat, Manfred</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Asia Pacific journal on computational engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duong, Minh Tuan</au><au>Nguyen, Nhu Huynh</au><au>Staat, Manfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical response of hyperelastic models for composite materials and soft tissues</atitle><jtitle>Asia Pacific journal on computational engineering</jtitle><stitle>Asia Pac. J. Comput. Engin</stitle><date>2015-12-08</date><risdate>2015</risdate><volume>2</volume><issue>1</issue><spage>1</spage><pages>1-</pages><artnum>3</artnum><issn>2196-1166</issn><eissn>2196-1166</eissn><abstract>A hyperelastic model must not only characterize the mechanical response of a composite material such as soft tissue, but also ensure numerical stability by a feasible set of material parameters. Apart from the well-known ill-conditioning problem caused by the incompressibility constraint, the paper indicates another ill-conditioning occurring in any general fibre-reinforced material model for tubular organs when unbalance between the fibre strain energy and the matrix strain energy becomes too large. Specifically, although the Holzapfel model is polyconvex, this problem can be observed as an unphysical behaviour in a physiological deformation range of a tissue such as arterial wall and intestine by thickening in the thickness direction associated with a volume growth of a specimen in a tension test. Particularly, the same problem for a polyconvex modified Fung-type model with the matrix characterized by the neo-Hookean model has been discussed for the first time. By investigating the influence of the shear modulus in these two models, we not only prove the cause of the ill-conditioning but also propose a solution to control the unbalance in the strain energy. The numerical results show significant enhancement of the model stability in overcoming the unphysical deformation.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1186/s40540-015-0015-x</doi><orcidid>https://orcid.org/0000-0003-4363-6570</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-1166
ispartof Asia Pacific journal on computational engineering, 2015-12, Vol.2 (1), p.1, Article 3
issn 2196-1166
2196-1166
language eng
recordid cdi_proquest_journals_1749607130
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals
subjects Classical and Continuum Physics
Composite materials
Computational Science and Engineering
Engineering
Mathematical Applications in the Physical Sciences
Theoretical and Applied Mechanics
title Physical response of hyperelastic models for composite materials and soft tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20response%20of%20hyperelastic%20models%20for%20composite%20materials%20and%20soft%20tissues&rft.jtitle=Asia%20Pacific%20journal%20on%20computational%20engineering&rft.au=Duong,%20Minh%20Tuan&rft.date=2015-12-08&rft.volume=2&rft.issue=1&rft.spage=1&rft.pages=1-&rft.artnum=3&rft.issn=2196-1166&rft.eissn=2196-1166&rft_id=info:doi/10.1186/s40540-015-0015-x&rft_dat=%3Cproquest_cross%3E3897226121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1749607130&rft_id=info:pmid/&rfr_iscdi=true