On Harmonic K-Quasiconformal Mappings Associated with Asymmetric Vertical Strips

In this paper,we discuss the sense-preserving univalent harmonic mappings from the unit disk D onto asymmetrical vertical strips Ωα={ω:α-π/2sinαR(ω)α/2sinα},π/2≤απSuch results as analytic representation formula,coefficient estimates,distortion theorem and area theorem are derived....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2015-12, Vol.31 (12), p.1970-1976
Hauptverfasser: Wang, Zhi Gang, Shi, Lei, Jiang, Yue Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1976
container_issue 12
container_start_page 1970
container_title Acta mathematica Sinica. English series
container_volume 31
creator Wang, Zhi Gang
Shi, Lei
Jiang, Yue Ping
description In this paper,we discuss the sense-preserving univalent harmonic mappings from the unit disk D onto asymmetrical vertical strips Ωα={ω:α-π/2sinαR(ω)α/2sinα},π/2≤απSuch results as analytic representation formula,coefficient estimates,distortion theorem and area theorem are derived.
doi_str_mv 10.1007/s10114-015-4773-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1749596530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>666585699</cqvip_id><sourcerecordid>3897184321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-93da345cbcab1d3ef965834ef3cd2f445e47205b06bc322c18d8900e180ede153</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7hFcDZ440fiY1UBRRQVxONqOY7TpmriYKdC_fe4SoU4cdpdab4Z7SB0CeQGCMluAxAAhglwzLKM4vwIjYBRiTMB2fFhzzmIU3QWwpoQziURI_SyaJOZ9o1ra5M84detDrVxbeV8ozfJs-66ul2GZBKCM7XubZl81_0q3rumsb2P0Kf1fW2i-C2eXThHJ5XeBHtxmGP0cX_3Pp3h-eLhcTqZY0MZ7bGkpaaMm8LoAkpqKyl4TpmtqCnTijFuWZYSXhBRGJqmBvIyl4RYyIktLXA6RteDb-fd19aGXq3d1rcxUkHGJI9-lEQVDCrjXQjeVqrzdaP9TgFR--LUUJyKxal9cSqPTDowIWrbpfV_nP-Brg5BK9cuvyL3myREfI0LKekPL_B77w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1749596530</pqid></control><display><type>article</type><title>On Harmonic K-Quasiconformal Mappings Associated with Asymmetric Vertical Strips</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Zhi Gang ; Shi, Lei ; Jiang, Yue Ping</creator><creatorcontrib>Wang, Zhi Gang ; Shi, Lei ; Jiang, Yue Ping</creatorcontrib><description>In this paper,we discuss the sense-preserving univalent harmonic mappings from the unit disk D onto asymmetrical vertical strips Ωα={ω:α-π/2sinαR(ω)α/2sinα},π/2≤απSuch results as analytic representation formula,coefficient estimates,distortion theorem and area theorem are derived.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-015-4773-8</identifier><language>eng</language><publisher>Beijing: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>K-拟共形映射 ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Studies ; Theorems ; 不对称 ; 单位圆盘 ; 单叶调和映射 ; 垂直 ; 定理推导 ; 解析表示式 ; 谐波</subject><ispartof>Acta mathematica Sinica. English series, 2015-12, Vol.31 (12), p.1970-1976</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-93da345cbcab1d3ef965834ef3cd2f445e47205b06bc322c18d8900e180ede153</citedby><cites>FETCH-LOGICAL-c343t-93da345cbcab1d3ef965834ef3cd2f445e47205b06bc322c18d8900e180ede153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-015-4773-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-015-4773-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Zhi Gang</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Jiang, Yue Ping</creatorcontrib><title>On Harmonic K-Quasiconformal Mappings Associated with Asymmetric Vertical Strips</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>In this paper,we discuss the sense-preserving univalent harmonic mappings from the unit disk D onto asymmetrical vertical strips Ωα={ω:α-π/2sinαR(ω)α/2sinα},π/2≤απSuch results as analytic representation formula,coefficient estimates,distortion theorem and area theorem are derived.</description><subject>K-拟共形映射</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Studies</subject><subject>Theorems</subject><subject>不对称</subject><subject>单位圆盘</subject><subject>单叶调和映射</subject><subject>垂直</subject><subject>定理推导</subject><subject>解析表示式</subject><subject>谐波</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwA7hFcDZ440fiY1UBRRQVxONqOY7TpmriYKdC_fe4SoU4cdpdab4Z7SB0CeQGCMluAxAAhglwzLKM4vwIjYBRiTMB2fFhzzmIU3QWwpoQziURI_SyaJOZ9o1ra5M84detDrVxbeV8ozfJs-66ul2GZBKCM7XubZl81_0q3rumsb2P0Kf1fW2i-C2eXThHJ5XeBHtxmGP0cX_3Pp3h-eLhcTqZY0MZ7bGkpaaMm8LoAkpqKyl4TpmtqCnTijFuWZYSXhBRGJqmBvIyl4RYyIktLXA6RteDb-fd19aGXq3d1rcxUkHGJI9-lEQVDCrjXQjeVqrzdaP9TgFR--LUUJyKxal9cSqPTDowIWrbpfV_nP-Brg5BK9cuvyL3myREfI0LKekPL_B77w</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Wang, Zhi Gang</creator><creator>Shi, Lei</creator><creator>Jiang, Yue Ping</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20151201</creationdate><title>On Harmonic K-Quasiconformal Mappings Associated with Asymmetric Vertical Strips</title><author>Wang, Zhi Gang ; Shi, Lei ; Jiang, Yue Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-93da345cbcab1d3ef965834ef3cd2f445e47205b06bc322c18d8900e180ede153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>K-拟共形映射</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Studies</topic><topic>Theorems</topic><topic>不对称</topic><topic>单位圆盘</topic><topic>单叶调和映射</topic><topic>垂直</topic><topic>定理推导</topic><topic>解析表示式</topic><topic>谐波</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhi Gang</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Jiang, Yue Ping</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhi Gang</au><au>Shi, Lei</au><au>Jiang, Yue Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Harmonic K-Quasiconformal Mappings Associated with Asymmetric Vertical Strips</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>31</volume><issue>12</issue><spage>1970</spage><epage>1976</epage><pages>1970-1976</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>In this paper,we discuss the sense-preserving univalent harmonic mappings from the unit disk D onto asymmetrical vertical strips Ωα={ω:α-π/2sinαR(ω)α/2sinα},π/2≤απSuch results as analytic representation formula,coefficient estimates,distortion theorem and area theorem are derived.</abstract><cop>Beijing</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-015-4773-8</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2015-12, Vol.31 (12), p.1970-1976
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_journals_1749596530
source SpringerNature Journals; Alma/SFX Local Collection
subjects K-拟共形映射
Mathematical models
Mathematics
Mathematics and Statistics
Studies
Theorems
不对称
单位圆盘
单叶调和映射
垂直
定理推导
解析表示式
谐波
title On Harmonic K-Quasiconformal Mappings Associated with Asymmetric Vertical Strips
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Harmonic%20K-Quasiconformal%20Mappings%20Associated%20with%20Asymmetric%20Vertical%20Strips&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Wang,%20Zhi%20Gang&rft.date=2015-12-01&rft.volume=31&rft.issue=12&rft.spage=1970&rft.epage=1976&rft.pages=1970-1976&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-015-4773-8&rft_dat=%3Cproquest_cross%3E3897184321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1749596530&rft_id=info:pmid/&rft_cqvip_id=666585699&rfr_iscdi=true