Enhancing potency of siRNA targeting fusion genes by optimization outside of target sequence
Canonical siRNA design algorithms have become remarkably effective at predicting favorable binding regions within a target mRNA, but in some cases (e.g., a fusion junction site) region choice is restricted. In these instances, alternative approaches are necessary to obtain a highly potent silencing...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-12, Vol.112 (48), p.E6597-E6605 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E6605 |
---|---|
container_issue | 48 |
container_start_page | E6597 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Gavrilov, Kseniya Seo, Young-Eun Tietjen, Gregory T. Cui, Jiajia Cheng, Christopher J. Saltzman, W. Mark |
description | Canonical siRNA design algorithms have become remarkably effective at predicting favorable binding regions within a target mRNA, but in some cases (e.g., a fusion junction site) region choice is restricted. In these instances, alternative approaches are necessary to obtain a highly potent silencing molecule. Here we focus on strategies for rational optimization of two siRNAs that target the junction sites of fusion oncogenes BCR-ABL and TMPRSS2-ERG. We demonstrate that modifying the termini of these siRNAs with a terminal G-U wobble pair or a carefully selected pair of terminal asymmetry-enhancing mismatches can result in an increase in potency at low doses. Importantly, we observed that improvements in silencing at the mRNA level do not necessarily translate to reductions in protein level and/or cell death. Decline in protein level is also heavily influenced by targeted protein half-life, and delivery vehicle toxicity can confound measures of cell death due to silencing. Therefore, for BCR-ABL, which has a long protein halflife that is difficult to overcome using siRNA, we also developed a nontoxic transfection vector: poly(lactic-coglycolic acid) nanoparticles that release siRNA over many days. We show that this system can achieve effective killing of leukemic cells. These findings provide insights into the implications of siRNA sequence for potency and suggest strategies for the design of more effective therapeutic siRNA molecules. Furthermore, this work points to the importance of integrating studies of siRNA design and delivery, while heeding and addressing potential limitations such as restricted targetable mRNA regions, long protein half-lives, and nonspecific toxicities. |
doi_str_mv | 10.1073/pnas.1517039112 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1748595760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26465968</jstor_id><sourcerecordid>26465968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-1bd5dd98add4e55f4647a1f5c188cd392a3b065df8cdec2513ef16730ff04bf33</originalsourceid><addsrcrecordid>eNqNkc2L1DAYh4Mo7rh69qQUvHjpbt589yIsy_gBi4LoTQhpm8xmmElqkgrrX2_KjOPqyVNo3uf38KY_hJ4DvgAs6eUUTL4ADhLTDoA8QCvAHbSCdfghWmFMZKsYYWfoSc5bjHHHFX6MzogQRBIOK_RtHW5NGHzYNFMsNgx3TXRN9p8_XjXFpI0ty8jN2cfQbGywuekrMhW_9z9NWW7jXLIf7ZI7JJpsv89VZZ-iR87ssn12PM_R17frL9fv25tP7z5cX920A8dQWuhHPo6dMuPILOeOCSYNOD6AUsNIO2JojwUfXf2yQ12bWgdCUuwcZr2j9By9OXinud_bcbChJLPTU_J7k-50NF7_PQn-Vm_iD82EJAoWweujIMW6ei567_NgdzsTbJyzBskVYUxR_B8oVYoQ4Kyir_5Bt3FOof6JSjHFOy7FIrw8UEOKOSfrTnsD1kvJeilZ_ym5Jl7ef-6J_91qBZojsCRPOiCaKb0WvJMVeXFAtrnEdE_B6lgo-gsa0biC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1748595760</pqid></control><display><type>article</type><title>Enhancing potency of siRNA targeting fusion genes by optimization outside of target sequence</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gavrilov, Kseniya ; Seo, Young-Eun ; Tietjen, Gregory T. ; Cui, Jiajia ; Cheng, Christopher J. ; Saltzman, W. Mark</creator><creatorcontrib>Gavrilov, Kseniya ; Seo, Young-Eun ; Tietjen, Gregory T. ; Cui, Jiajia ; Cheng, Christopher J. ; Saltzman, W. Mark</creatorcontrib><description>Canonical siRNA design algorithms have become remarkably effective at predicting favorable binding regions within a target mRNA, but in some cases (e.g., a fusion junction site) region choice is restricted. In these instances, alternative approaches are necessary to obtain a highly potent silencing molecule. Here we focus on strategies for rational optimization of two siRNAs that target the junction sites of fusion oncogenes BCR-ABL and TMPRSS2-ERG. We demonstrate that modifying the termini of these siRNAs with a terminal G-U wobble pair or a carefully selected pair of terminal asymmetry-enhancing mismatches can result in an increase in potency at low doses. Importantly, we observed that improvements in silencing at the mRNA level do not necessarily translate to reductions in protein level and/or cell death. Decline in protein level is also heavily influenced by targeted protein half-life, and delivery vehicle toxicity can confound measures of cell death due to silencing. Therefore, for BCR-ABL, which has a long protein halflife that is difficult to overcome using siRNA, we also developed a nontoxic transfection vector: poly(lactic-coglycolic acid) nanoparticles that release siRNA over many days. We show that this system can achieve effective killing of leukemic cells. These findings provide insights into the implications of siRNA sequence for potency and suggest strategies for the design of more effective therapeutic siRNA molecules. Furthermore, this work points to the importance of integrating studies of siRNA design and delivery, while heeding and addressing potential limitations such as restricted targetable mRNA regions, long protein half-lives, and nonspecific toxicities.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1517039112</identifier><identifier>PMID: 26627251</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algorithms ; Apoptosis ; Base Sequence ; Binding Sites ; Biological Sciences ; Cell Line, Tumor ; Cell Survival ; Drug Delivery Systems ; Fusion Proteins, bcr-abl - genetics ; Gene Expression Regulation, Leukemic ; Gene Targeting - methods ; Genes ; HEK293 Cells ; Humans ; K562 Cells ; Lactic Acid - chemistry ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism ; Molecules ; Nanoparticles ; Oncogene Proteins, Fusion - genetics ; Optimization ; Physical Sciences ; PNAS Plus ; Polyglycolic Acid - chemistry ; Ribonucleic acid ; RNA ; RNA Interference ; RNA, Messenger - metabolism ; RNA, Small Interfering - metabolism ; Toxicity ; Transfection</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-12, Vol.112 (48), p.E6597-E6605</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 1, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-1bd5dd98add4e55f4647a1f5c188cd392a3b065df8cdec2513ef16730ff04bf33</citedby><cites>FETCH-LOGICAL-c501t-1bd5dd98add4e55f4647a1f5c188cd392a3b065df8cdec2513ef16730ff04bf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/48.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26465968$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26465968$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26627251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gavrilov, Kseniya</creatorcontrib><creatorcontrib>Seo, Young-Eun</creatorcontrib><creatorcontrib>Tietjen, Gregory T.</creatorcontrib><creatorcontrib>Cui, Jiajia</creatorcontrib><creatorcontrib>Cheng, Christopher J.</creatorcontrib><creatorcontrib>Saltzman, W. Mark</creatorcontrib><title>Enhancing potency of siRNA targeting fusion genes by optimization outside of target sequence</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Canonical siRNA design algorithms have become remarkably effective at predicting favorable binding regions within a target mRNA, but in some cases (e.g., a fusion junction site) region choice is restricted. In these instances, alternative approaches are necessary to obtain a highly potent silencing molecule. Here we focus on strategies for rational optimization of two siRNAs that target the junction sites of fusion oncogenes BCR-ABL and TMPRSS2-ERG. We demonstrate that modifying the termini of these siRNAs with a terminal G-U wobble pair or a carefully selected pair of terminal asymmetry-enhancing mismatches can result in an increase in potency at low doses. Importantly, we observed that improvements in silencing at the mRNA level do not necessarily translate to reductions in protein level and/or cell death. Decline in protein level is also heavily influenced by targeted protein half-life, and delivery vehicle toxicity can confound measures of cell death due to silencing. Therefore, for BCR-ABL, which has a long protein halflife that is difficult to overcome using siRNA, we also developed a nontoxic transfection vector: poly(lactic-coglycolic acid) nanoparticles that release siRNA over many days. We show that this system can achieve effective killing of leukemic cells. These findings provide insights into the implications of siRNA sequence for potency and suggest strategies for the design of more effective therapeutic siRNA molecules. Furthermore, this work points to the importance of integrating studies of siRNA design and delivery, while heeding and addressing potential limitations such as restricted targetable mRNA regions, long protein half-lives, and nonspecific toxicities.</description><subject>Algorithms</subject><subject>Apoptosis</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival</subject><subject>Drug Delivery Systems</subject><subject>Fusion Proteins, bcr-abl - genetics</subject><subject>Gene Expression Regulation, Leukemic</subject><subject>Gene Targeting - methods</subject><subject>Genes</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>K562 Cells</subject><subject>Lactic Acid - chemistry</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</subject><subject>Molecules</subject><subject>Nanoparticles</subject><subject>Oncogene Proteins, Fusion - genetics</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Interference</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Toxicity</subject><subject>Transfection</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2L1DAYh4Mo7rh69qQUvHjpbt589yIsy_gBi4LoTQhpm8xmmElqkgrrX2_KjOPqyVNo3uf38KY_hJ4DvgAs6eUUTL4ADhLTDoA8QCvAHbSCdfghWmFMZKsYYWfoSc5bjHHHFX6MzogQRBIOK_RtHW5NGHzYNFMsNgx3TXRN9p8_XjXFpI0ty8jN2cfQbGywuekrMhW_9z9NWW7jXLIf7ZI7JJpsv89VZZ-iR87ssn12PM_R17frL9fv25tP7z5cX920A8dQWuhHPo6dMuPILOeOCSYNOD6AUsNIO2JojwUfXf2yQ12bWgdCUuwcZr2j9By9OXinud_bcbChJLPTU_J7k-50NF7_PQn-Vm_iD82EJAoWweujIMW6ei567_NgdzsTbJyzBskVYUxR_B8oVYoQ4Kyir_5Bt3FOof6JSjHFOy7FIrw8UEOKOSfrTnsD1kvJeilZ_ym5Jl7ef-6J_91qBZojsCRPOiCaKb0WvJMVeXFAtrnEdE_B6lgo-gsa0biC</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Gavrilov, Kseniya</creator><creator>Seo, Young-Eun</creator><creator>Tietjen, Gregory T.</creator><creator>Cui, Jiajia</creator><creator>Cheng, Christopher J.</creator><creator>Saltzman, W. Mark</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>7ST</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>20151201</creationdate><title>Enhancing potency of siRNA targeting fusion genes by optimization outside of target sequence</title><author>Gavrilov, Kseniya ; Seo, Young-Eun ; Tietjen, Gregory T. ; Cui, Jiajia ; Cheng, Christopher J. ; Saltzman, W. Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-1bd5dd98add4e55f4647a1f5c188cd392a3b065df8cdec2513ef16730ff04bf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Apoptosis</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival</topic><topic>Drug Delivery Systems</topic><topic>Fusion Proteins, bcr-abl - genetics</topic><topic>Gene Expression Regulation, Leukemic</topic><topic>Gene Targeting - methods</topic><topic>Genes</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>K562 Cells</topic><topic>Lactic Acid - chemistry</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</topic><topic>Molecules</topic><topic>Nanoparticles</topic><topic>Oncogene Proteins, Fusion - genetics</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Interference</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Toxicity</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gavrilov, Kseniya</creatorcontrib><creatorcontrib>Seo, Young-Eun</creatorcontrib><creatorcontrib>Tietjen, Gregory T.</creatorcontrib><creatorcontrib>Cui, Jiajia</creatorcontrib><creatorcontrib>Cheng, Christopher J.</creatorcontrib><creatorcontrib>Saltzman, W. Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gavrilov, Kseniya</au><au>Seo, Young-Eun</au><au>Tietjen, Gregory T.</au><au>Cui, Jiajia</au><au>Cheng, Christopher J.</au><au>Saltzman, W. Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing potency of siRNA targeting fusion genes by optimization outside of target sequence</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>112</volume><issue>48</issue><spage>E6597</spage><epage>E6605</epage><pages>E6597-E6605</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Canonical siRNA design algorithms have become remarkably effective at predicting favorable binding regions within a target mRNA, but in some cases (e.g., a fusion junction site) region choice is restricted. In these instances, alternative approaches are necessary to obtain a highly potent silencing molecule. Here we focus on strategies for rational optimization of two siRNAs that target the junction sites of fusion oncogenes BCR-ABL and TMPRSS2-ERG. We demonstrate that modifying the termini of these siRNAs with a terminal G-U wobble pair or a carefully selected pair of terminal asymmetry-enhancing mismatches can result in an increase in potency at low doses. Importantly, we observed that improvements in silencing at the mRNA level do not necessarily translate to reductions in protein level and/or cell death. Decline in protein level is also heavily influenced by targeted protein half-life, and delivery vehicle toxicity can confound measures of cell death due to silencing. Therefore, for BCR-ABL, which has a long protein halflife that is difficult to overcome using siRNA, we also developed a nontoxic transfection vector: poly(lactic-coglycolic acid) nanoparticles that release siRNA over many days. We show that this system can achieve effective killing of leukemic cells. These findings provide insights into the implications of siRNA sequence for potency and suggest strategies for the design of more effective therapeutic siRNA molecules. Furthermore, this work points to the importance of integrating studies of siRNA design and delivery, while heeding and addressing potential limitations such as restricted targetable mRNA regions, long protein half-lives, and nonspecific toxicities.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26627251</pmid><doi>10.1073/pnas.1517039112</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-12, Vol.112 (48), p.E6597-E6605 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1748595760 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Apoptosis Base Sequence Binding Sites Biological Sciences Cell Line, Tumor Cell Survival Drug Delivery Systems Fusion Proteins, bcr-abl - genetics Gene Expression Regulation, Leukemic Gene Targeting - methods Genes HEK293 Cells Humans K562 Cells Lactic Acid - chemistry Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism Molecules Nanoparticles Oncogene Proteins, Fusion - genetics Optimization Physical Sciences PNAS Plus Polyglycolic Acid - chemistry Ribonucleic acid RNA RNA Interference RNA, Messenger - metabolism RNA, Small Interfering - metabolism Toxicity Transfection |
title | Enhancing potency of siRNA targeting fusion genes by optimization outside of target sequence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20potency%20of%20siRNA%20targeting%20fusion%20genes%20by%20optimization%20outside%20of%20target%20sequence&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gavrilov,%20Kseniya&rft.date=2015-12-01&rft.volume=112&rft.issue=48&rft.spage=E6597&rft.epage=E6605&rft.pages=E6597-E6605&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1517039112&rft_dat=%3Cjstor_proqu%3E26465968%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1748595760&rft_id=info:pmid/26627251&rft_jstor_id=26465968&rfr_iscdi=true |