Cloud computing-based map-matching for transportation data center

•Propose a leapfrog method to improve the efficiency of map-matching algorithm.•Use MapReduce to adapt the serial map-matching algorithm for cloud computing environment.•Propose a privacy-aware map-matching model over hybrid clouds. Transportation data center has recently become a common practice of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic commerce research and applications 2015-10, Vol.14 (6), p.431-443
Hauptverfasser: Huang, Jian, Qie, Jinhui, Liu, Chunwei, Li, Siyang, Weng, Jingnong, Lv, Weifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 443
container_issue 6
container_start_page 431
container_title Electronic commerce research and applications
container_volume 14
creator Huang, Jian
Qie, Jinhui
Liu, Chunwei
Li, Siyang
Weng, Jingnong
Lv, Weifeng
description •Propose a leapfrog method to improve the efficiency of map-matching algorithm.•Use MapReduce to adapt the serial map-matching algorithm for cloud computing environment.•Propose a privacy-aware map-matching model over hybrid clouds. Transportation data center has recently become a common practice of modern integrated transportation management in major cities of China. Being the convergence center of large-scale multi-source vehicle tracking data, it caused great challenge on GPS map-matching efficiency and privacy protection. In this paper, we propose a secure parallel map-matching system based on Cloud Computing technology to meet the demand of transportation data center. The main contributions are as follows: (1) we propose a leapfrog method to improve the efficiency of traditional serial map-matching algorithm on the increasingly common high sampling rate GPS data; (2) we adapt the serial leapfrog map-matching algorithm for cloud computing environment by reforming it in the MapReduce paradigm; (3) we propose a privacy-aware map-matching model over hybrid clouds to realize the sensitive GPS data protection. We implemented the proposed map-matching system in the hadoop platform and tested its performance with a large-scale vehicle tracking dataset, which exceeds 100 billion records. The experimental results show that our approach is highly efficient and effective on massive vehicle tracking data processing.
doi_str_mv 10.1016/j.elerap.2015.03.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1746864681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567422315000241</els_id><sourcerecordid>3889095341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-aebb712f60cef7b584432e6c0b252e79ff67099eb6e710b2abdb8749b302d8093</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw8Fz62TNE3ai7As_oMFL3oOSTrVlm1Tk1Tw2xupZw_DDI_3ZpgfIdcUCgpU3A4FHtHruWBAqwLKAkCckA2tZZnLmovTNFdC5pyx8pxchDAAMGig2pDd_uiWNrNunJfYT--50QHbbNRzPupoP5KUdc5n0espzM5HHXs3Za2OOrM4RfSX5KzTx4BXf31L3h7uX_dP-eHl8Xm_O-SWA4-5RmMkZZ0Ai500Vc15yVBYMKxiKJuuExKaBo1ASZOoTWtqyRtTAmtraMotuVn3zt59LhiiGtzip3RSUclFLVLR5OKry3oXgsdOzb4ftf9WFNQvLDWoFZb6haWgVAlWit2tMUwffPXoVbA9Thbb3qONqnX9_wt-AJXMdJo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1746864681</pqid></control><display><type>article</type><title>Cloud computing-based map-matching for transportation data center</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Jian ; Qie, Jinhui ; Liu, Chunwei ; Li, Siyang ; Weng, Jingnong ; Lv, Weifeng</creator><creatorcontrib>Huang, Jian ; Qie, Jinhui ; Liu, Chunwei ; Li, Siyang ; Weng, Jingnong ; Lv, Weifeng</creatorcontrib><description>•Propose a leapfrog method to improve the efficiency of map-matching algorithm.•Use MapReduce to adapt the serial map-matching algorithm for cloud computing environment.•Propose a privacy-aware map-matching model over hybrid clouds. Transportation data center has recently become a common practice of modern integrated transportation management in major cities of China. Being the convergence center of large-scale multi-source vehicle tracking data, it caused great challenge on GPS map-matching efficiency and privacy protection. In this paper, we propose a secure parallel map-matching system based on Cloud Computing technology to meet the demand of transportation data center. The main contributions are as follows: (1) we propose a leapfrog method to improve the efficiency of traditional serial map-matching algorithm on the increasingly common high sampling rate GPS data; (2) we adapt the serial leapfrog map-matching algorithm for cloud computing environment by reforming it in the MapReduce paradigm; (3) we propose a privacy-aware map-matching model over hybrid clouds to realize the sensitive GPS data protection. We implemented the proposed map-matching system in the hadoop platform and tested its performance with a large-scale vehicle tracking dataset, which exceeds 100 billion records. The experimental results show that our approach is highly efficient and effective on massive vehicle tracking data processing.</description><identifier>ISSN: 1567-4223</identifier><identifier>EISSN: 1873-7846</identifier><identifier>DOI: 10.1016/j.elerap.2015.03.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Analysis ; Cloud computing ; Computer centers ; Efficiency ; Electronic commerce ; GPS privacy protection ; Hadoop ; Map-matching ; Mapping ; MapReduce ; Privacy ; Studies ; Tracking control systems ; Transportation ; Vehicle tracking data</subject><ispartof>Electronic commerce research and applications, 2015-10, Vol.14 (6), p.431-443</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-aebb712f60cef7b584432e6c0b252e79ff67099eb6e710b2abdb8749b302d8093</citedby><cites>FETCH-LOGICAL-c404t-aebb712f60cef7b584432e6c0b252e79ff67099eb6e710b2abdb8749b302d8093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1567422315000241$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Huang, Jian</creatorcontrib><creatorcontrib>Qie, Jinhui</creatorcontrib><creatorcontrib>Liu, Chunwei</creatorcontrib><creatorcontrib>Li, Siyang</creatorcontrib><creatorcontrib>Weng, Jingnong</creatorcontrib><creatorcontrib>Lv, Weifeng</creatorcontrib><title>Cloud computing-based map-matching for transportation data center</title><title>Electronic commerce research and applications</title><description>•Propose a leapfrog method to improve the efficiency of map-matching algorithm.•Use MapReduce to adapt the serial map-matching algorithm for cloud computing environment.•Propose a privacy-aware map-matching model over hybrid clouds. Transportation data center has recently become a common practice of modern integrated transportation management in major cities of China. Being the convergence center of large-scale multi-source vehicle tracking data, it caused great challenge on GPS map-matching efficiency and privacy protection. In this paper, we propose a secure parallel map-matching system based on Cloud Computing technology to meet the demand of transportation data center. The main contributions are as follows: (1) we propose a leapfrog method to improve the efficiency of traditional serial map-matching algorithm on the increasingly common high sampling rate GPS data; (2) we adapt the serial leapfrog map-matching algorithm for cloud computing environment by reforming it in the MapReduce paradigm; (3) we propose a privacy-aware map-matching model over hybrid clouds to realize the sensitive GPS data protection. We implemented the proposed map-matching system in the hadoop platform and tested its performance with a large-scale vehicle tracking dataset, which exceeds 100 billion records. The experimental results show that our approach is highly efficient and effective on massive vehicle tracking data processing.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Cloud computing</subject><subject>Computer centers</subject><subject>Efficiency</subject><subject>Electronic commerce</subject><subject>GPS privacy protection</subject><subject>Hadoop</subject><subject>Map-matching</subject><subject>Mapping</subject><subject>MapReduce</subject><subject>Privacy</subject><subject>Studies</subject><subject>Tracking control systems</subject><subject>Transportation</subject><subject>Vehicle tracking data</subject><issn>1567-4223</issn><issn>1873-7846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw8Fz62TNE3ai7As_oMFL3oOSTrVlm1Tk1Tw2xupZw_DDI_3ZpgfIdcUCgpU3A4FHtHruWBAqwLKAkCckA2tZZnLmovTNFdC5pyx8pxchDAAMGig2pDd_uiWNrNunJfYT--50QHbbNRzPupoP5KUdc5n0espzM5HHXs3Za2OOrM4RfSX5KzTx4BXf31L3h7uX_dP-eHl8Xm_O-SWA4-5RmMkZZ0Ai500Vc15yVBYMKxiKJuuExKaBo1ASZOoTWtqyRtTAmtraMotuVn3zt59LhiiGtzip3RSUclFLVLR5OKry3oXgsdOzb4ftf9WFNQvLDWoFZb6haWgVAlWit2tMUwffPXoVbA9Thbb3qONqnX9_wt-AJXMdJo</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Huang, Jian</creator><creator>Qie, Jinhui</creator><creator>Liu, Chunwei</creator><creator>Li, Siyang</creator><creator>Weng, Jingnong</creator><creator>Lv, Weifeng</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20151001</creationdate><title>Cloud computing-based map-matching for transportation data center</title><author>Huang, Jian ; Qie, Jinhui ; Liu, Chunwei ; Li, Siyang ; Weng, Jingnong ; Lv, Weifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-aebb712f60cef7b584432e6c0b252e79ff67099eb6e710b2abdb8749b302d8093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Cloud computing</topic><topic>Computer centers</topic><topic>Efficiency</topic><topic>Electronic commerce</topic><topic>GPS privacy protection</topic><topic>Hadoop</topic><topic>Map-matching</topic><topic>Mapping</topic><topic>MapReduce</topic><topic>Privacy</topic><topic>Studies</topic><topic>Tracking control systems</topic><topic>Transportation</topic><topic>Vehicle tracking data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jian</creatorcontrib><creatorcontrib>Qie, Jinhui</creatorcontrib><creatorcontrib>Liu, Chunwei</creatorcontrib><creatorcontrib>Li, Siyang</creatorcontrib><creatorcontrib>Weng, Jingnong</creatorcontrib><creatorcontrib>Lv, Weifeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Electronic commerce research and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jian</au><au>Qie, Jinhui</au><au>Liu, Chunwei</au><au>Li, Siyang</au><au>Weng, Jingnong</au><au>Lv, Weifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloud computing-based map-matching for transportation data center</atitle><jtitle>Electronic commerce research and applications</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>14</volume><issue>6</issue><spage>431</spage><epage>443</epage><pages>431-443</pages><issn>1567-4223</issn><eissn>1873-7846</eissn><abstract>•Propose a leapfrog method to improve the efficiency of map-matching algorithm.•Use MapReduce to adapt the serial map-matching algorithm for cloud computing environment.•Propose a privacy-aware map-matching model over hybrid clouds. Transportation data center has recently become a common practice of modern integrated transportation management in major cities of China. Being the convergence center of large-scale multi-source vehicle tracking data, it caused great challenge on GPS map-matching efficiency and privacy protection. In this paper, we propose a secure parallel map-matching system based on Cloud Computing technology to meet the demand of transportation data center. The main contributions are as follows: (1) we propose a leapfrog method to improve the efficiency of traditional serial map-matching algorithm on the increasingly common high sampling rate GPS data; (2) we adapt the serial leapfrog map-matching algorithm for cloud computing environment by reforming it in the MapReduce paradigm; (3) we propose a privacy-aware map-matching model over hybrid clouds to realize the sensitive GPS data protection. We implemented the proposed map-matching system in the hadoop platform and tested its performance with a large-scale vehicle tracking dataset, which exceeds 100 billion records. The experimental results show that our approach is highly efficient and effective on massive vehicle tracking data processing.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.elerap.2015.03.006</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1567-4223
ispartof Electronic commerce research and applications, 2015-10, Vol.14 (6), p.431-443
issn 1567-4223
1873-7846
language eng
recordid cdi_proquest_journals_1746864681
source Elsevier ScienceDirect Journals
subjects Algorithms
Analysis
Cloud computing
Computer centers
Efficiency
Electronic commerce
GPS privacy protection
Hadoop
Map-matching
Mapping
MapReduce
Privacy
Studies
Tracking control systems
Transportation
Vehicle tracking data
title Cloud computing-based map-matching for transportation data center
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloud%20computing-based%20map-matching%20for%20transportation%20data%20center&rft.jtitle=Electronic%20commerce%20research%20and%20applications&rft.au=Huang,%20Jian&rft.date=2015-10-01&rft.volume=14&rft.issue=6&rft.spage=431&rft.epage=443&rft.pages=431-443&rft.issn=1567-4223&rft.eissn=1873-7846&rft_id=info:doi/10.1016/j.elerap.2015.03.006&rft_dat=%3Cproquest_cross%3E3889095341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1746864681&rft_id=info:pmid/&rft_els_id=S1567422315000241&rfr_iscdi=true