Machine Learning and Mass Estimation Methods for Ground-Based Aircraft Climb Prediction

In this paper, we apply machine learning methods to improve the aircraft climb prediction in the context of ground-based applications. Mass is a key parameter for climb prediction. As it is considered a competitive parameter by many airlines, it is currently not available to ground-based trajectory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2015-12, Vol.16 (6), p.3138-3149
Hauptverfasser: Alligier, Richard, Gianazza, David, Durand, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3149
container_issue 6
container_start_page 3138
container_title IEEE transactions on intelligent transportation systems
container_volume 16
creator Alligier, Richard
Gianazza, David
Durand, Nicolas
description In this paper, we apply machine learning methods to improve the aircraft climb prediction in the context of ground-based applications. Mass is a key parameter for climb prediction. As it is considered a competitive parameter by many airlines, it is currently not available to ground-based trajectory predictors. Consequently, most predictors today use a reference mass that may be different from the actual aircraft mass. In previous papers, we have introduced a least squares method to estimate the mass from past trajectory points, using the physical model of the aircraft. Another mass estimation method, based on an adaptive mechanism, has also been proposed by Schultz et al. We now introduce a new approach, in which the mass is considered the response variable of a prediction model that is learned from a set of example trajectories. This machine learning approach is compared with the results obtained when using the base of aircraft data (BADA) reference mass or the two state-of-the-art mass estimation methods. In these experiments, nine different aircraft types are considered. When compared with the baseline method (respectively, the mass estimation methods), the Machine Learning approach reduces the RMSE (Root Mean Square Error) on the predicted altitude by at least 58% (resp. 27%) when assuming the speed profile to be known, and by at least 29% (resp. 17%) when using the BADA speed profile except for the aircraft types E145 and F100. For these types, the observed speed profile is far from the BADA speed profile.
doi_str_mv 10.1109/TITS.2015.2437452
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1738860274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7123640</ieee_id><sourcerecordid>3883786711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-2b728c370bb397b2d1ec102db0d49960475ed4ab1f84ab2f65443ce6f9e781513</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJ-ORDZ27-NO3jHHMbdCg48TGkSeoytnYmneC3t2VjL_deDr9zORyE7oGMAEj-vFqsPkaUgBhRziQX9AINQIgsIQTSy_6mPMmJINfoJsZNp3IBMEBfS23Wvna4cDrUvv7GurZ4qWPE09j6nW59U-Ola9eNjbhqAp6F5lDb5EVHZ_HYBxN01eLJ1u9K_B6c9aa33KKrSm-juzvtIfp8na4m86R4my0m4yIxgqRtQktJM8MkKUuWy5JacAYItSWxPM9TwqVwlusSqqybtEoF58y4tMqdzEAAG6Kn49-13qp96AKHP9Vor-bjQvUaAcgAJPvt2ccjuw_Nz8HFVm2aQ6i7eKoDsiwlVPKOgiNlQhNjcNX5LRDVd636rlXftTp13Xkejh7vnDvzEihLOWH_mW54vA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738860274</pqid></control><display><type>article</type><title>Machine Learning and Mass Estimation Methods for Ground-Based Aircraft Climb Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Alligier, Richard ; Gianazza, David ; Durand, Nicolas</creator><creatorcontrib>Alligier, Richard ; Gianazza, David ; Durand, Nicolas</creatorcontrib><description>In this paper, we apply machine learning methods to improve the aircraft climb prediction in the context of ground-based applications. Mass is a key parameter for climb prediction. As it is considered a competitive parameter by many airlines, it is currently not available to ground-based trajectory predictors. Consequently, most predictors today use a reference mass that may be different from the actual aircraft mass. In previous papers, we have introduced a least squares method to estimate the mass from past trajectory points, using the physical model of the aircraft. Another mass estimation method, based on an adaptive mechanism, has also been proposed by Schultz et al. We now introduce a new approach, in which the mass is considered the response variable of a prediction model that is learned from a set of example trajectories. This machine learning approach is compared with the results obtained when using the base of aircraft data (BADA) reference mass or the two state-of-the-art mass estimation methods. In these experiments, nine different aircraft types are considered. When compared with the baseline method (respectively, the mass estimation methods), the Machine Learning approach reduces the RMSE (Root Mean Square Error) on the predicted altitude by at least 58% (resp. 27%) when assuming the speed profile to be known, and by at least 29% (resp. 17%) when using the BADA speed profile except for the aircraft types E145 and F100. For these types, the observed speed profile is far from the BADA speed profile.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2015.2437452</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aircraft ; Aircraft trajectory prediction ; base of aircraft data (BADA) ; Computer Science ; Estimating techniques ; Machine Learning ; mass estimation ; Methods ; Predictive models ; Trajectory</subject><ispartof>IEEE transactions on intelligent transportation systems, 2015-12, Vol.16 (6), p.3138-3149</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-2b728c370bb397b2d1ec102db0d49960475ed4ab1f84ab2f65443ce6f9e781513</citedby><cites>FETCH-LOGICAL-c506t-2b728c370bb397b2d1ec102db0d49960475ed4ab1f84ab2f65443ce6f9e781513</cites><orcidid>0000-0003-3279-8208 ; 0000-0002-9294-3422 ; 0000-0003-0417-9231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7123640$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7123640$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://enac.hal.science/hal-01181173$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alligier, Richard</creatorcontrib><creatorcontrib>Gianazza, David</creatorcontrib><creatorcontrib>Durand, Nicolas</creatorcontrib><title>Machine Learning and Mass Estimation Methods for Ground-Based Aircraft Climb Prediction</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>In this paper, we apply machine learning methods to improve the aircraft climb prediction in the context of ground-based applications. Mass is a key parameter for climb prediction. As it is considered a competitive parameter by many airlines, it is currently not available to ground-based trajectory predictors. Consequently, most predictors today use a reference mass that may be different from the actual aircraft mass. In previous papers, we have introduced a least squares method to estimate the mass from past trajectory points, using the physical model of the aircraft. Another mass estimation method, based on an adaptive mechanism, has also been proposed by Schultz et al. We now introduce a new approach, in which the mass is considered the response variable of a prediction model that is learned from a set of example trajectories. This machine learning approach is compared with the results obtained when using the base of aircraft data (BADA) reference mass or the two state-of-the-art mass estimation methods. In these experiments, nine different aircraft types are considered. When compared with the baseline method (respectively, the mass estimation methods), the Machine Learning approach reduces the RMSE (Root Mean Square Error) on the predicted altitude by at least 58% (resp. 27%) when assuming the speed profile to be known, and by at least 29% (resp. 17%) when using the BADA speed profile except for the aircraft types E145 and F100. For these types, the observed speed profile is far from the BADA speed profile.</description><subject>Aircraft</subject><subject>Aircraft trajectory prediction</subject><subject>base of aircraft data (BADA)</subject><subject>Computer Science</subject><subject>Estimating techniques</subject><subject>Machine Learning</subject><subject>mass estimation</subject><subject>Methods</subject><subject>Predictive models</subject><subject>Trajectory</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwJ-ORDZ27-NO3jHHMbdCg48TGkSeoytnYmneC3t2VjL_deDr9zORyE7oGMAEj-vFqsPkaUgBhRziQX9AINQIgsIQTSy_6mPMmJINfoJsZNp3IBMEBfS23Wvna4cDrUvv7GurZ4qWPE09j6nW59U-Ola9eNjbhqAp6F5lDb5EVHZ_HYBxN01eLJ1u9K_B6c9aa33KKrSm-juzvtIfp8na4m86R4my0m4yIxgqRtQktJM8MkKUuWy5JacAYItSWxPM9TwqVwlusSqqybtEoF58y4tMqdzEAAG6Kn49-13qp96AKHP9Vor-bjQvUaAcgAJPvt2ccjuw_Nz8HFVm2aQ6i7eKoDsiwlVPKOgiNlQhNjcNX5LRDVd636rlXftTp13Xkejh7vnDvzEihLOWH_mW54vA</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Alligier, Richard</creator><creator>Gianazza, David</creator><creator>Durand, Nicolas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3279-8208</orcidid><orcidid>https://orcid.org/0000-0002-9294-3422</orcidid><orcidid>https://orcid.org/0000-0003-0417-9231</orcidid></search><sort><creationdate>20151201</creationdate><title>Machine Learning and Mass Estimation Methods for Ground-Based Aircraft Climb Prediction</title><author>Alligier, Richard ; Gianazza, David ; Durand, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-2b728c370bb397b2d1ec102db0d49960475ed4ab1f84ab2f65443ce6f9e781513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aircraft</topic><topic>Aircraft trajectory prediction</topic><topic>base of aircraft data (BADA)</topic><topic>Computer Science</topic><topic>Estimating techniques</topic><topic>Machine Learning</topic><topic>mass estimation</topic><topic>Methods</topic><topic>Predictive models</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alligier, Richard</creatorcontrib><creatorcontrib>Gianazza, David</creatorcontrib><creatorcontrib>Durand, Nicolas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alligier, Richard</au><au>Gianazza, David</au><au>Durand, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning and Mass Estimation Methods for Ground-Based Aircraft Climb Prediction</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>16</volume><issue>6</issue><spage>3138</spage><epage>3149</epage><pages>3138-3149</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>In this paper, we apply machine learning methods to improve the aircraft climb prediction in the context of ground-based applications. Mass is a key parameter for climb prediction. As it is considered a competitive parameter by many airlines, it is currently not available to ground-based trajectory predictors. Consequently, most predictors today use a reference mass that may be different from the actual aircraft mass. In previous papers, we have introduced a least squares method to estimate the mass from past trajectory points, using the physical model of the aircraft. Another mass estimation method, based on an adaptive mechanism, has also been proposed by Schultz et al. We now introduce a new approach, in which the mass is considered the response variable of a prediction model that is learned from a set of example trajectories. This machine learning approach is compared with the results obtained when using the base of aircraft data (BADA) reference mass or the two state-of-the-art mass estimation methods. In these experiments, nine different aircraft types are considered. When compared with the baseline method (respectively, the mass estimation methods), the Machine Learning approach reduces the RMSE (Root Mean Square Error) on the predicted altitude by at least 58% (resp. 27%) when assuming the speed profile to be known, and by at least 29% (resp. 17%) when using the BADA speed profile except for the aircraft types E145 and F100. For these types, the observed speed profile is far from the BADA speed profile.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2015.2437452</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3279-8208</orcidid><orcidid>https://orcid.org/0000-0002-9294-3422</orcidid><orcidid>https://orcid.org/0000-0003-0417-9231</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2015-12, Vol.16 (6), p.3138-3149
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_1738860274
source IEEE Electronic Library (IEL)
subjects Aircraft
Aircraft trajectory prediction
base of aircraft data (BADA)
Computer Science
Estimating techniques
Machine Learning
mass estimation
Methods
Predictive models
Trajectory
title Machine Learning and Mass Estimation Methods for Ground-Based Aircraft Climb Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20and%20Mass%20Estimation%20Methods%20for%20Ground-Based%20Aircraft%20Climb%20Prediction&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Alligier,%20Richard&rft.date=2015-12-01&rft.volume=16&rft.issue=6&rft.spage=3138&rft.epage=3149&rft.pages=3138-3149&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2015.2437452&rft_dat=%3Cproquest_RIE%3E3883786711%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738860274&rft_id=info:pmid/&rft_ieee_id=7123640&rfr_iscdi=true