Adaptive Duty Cycling in Sensor Networks With Energy Harvesting Using Continuous-Time Markov Chain and Fluid Models
The dynamic and unpredictable nature of energy harvesting sources available for wireless sensor networks, and the time variation in network statistics like packet transmission rates and link qualities, necessitate the use of adaptive duty cycling techniques. Such adaptive control allows sensor nodes...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2015-12, Vol.33 (12), p.2687-2700 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2700 |
---|---|
container_issue | 12 |
container_start_page | 2687 |
container_title | IEEE journal on selected areas in communications |
container_volume | 33 |
creator | Chan, Wai Hong Ronald Zhang, Pengfei Nevat, Ido Nagarajan, Sai Ganesh Valera, Alvin C. Tan, Hwee-Xian Gautam, Natarajan |
description | The dynamic and unpredictable nature of energy harvesting sources available for wireless sensor networks, and the time variation in network statistics like packet transmission rates and link qualities, necessitate the use of adaptive duty cycling techniques. Such adaptive control allows sensor nodes to achieve long-run energy neutrality, where energy supply and demand are balanced in a dynamic environment such that the nodes function continuously. In this paper, we develop a new framework enabling an adaptive duty cycling scheme for sensor networks that takes into account the node battery level, ambient energy that can be harvested, and application-level QoS requirements. We model the system as a Markov decision process (MDP) that modifies its state transition policy using reinforcement learning. The MDP uses continuous time Markov chains (CTMCs) to model the network state of a node to obtain key QoS metrics like latency, loss probability, and power consumption, as well as to model the node battery level taking into account physically feasible rates of change. We show that with an appropriate choice of the reward function for the MDP, as well as a suitable learning rate, exploitation probability, and discount factor, the need to maintain minimum QoS levels for optimal network performance can be balanced with the need to promote the maintenance of a finite battery level to ensure node operability. Extensive simulation results show the benefit of our algorithm for different reward functions and parameters. |
doi_str_mv | 10.1109/JSAC.2015.2478717 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1738834045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7264968</ieee_id><sourcerecordid>3883599721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-b7454b671fda5b6fa2f02aab719e18cfcbff89dc8cea7f22d4493b2f17e120973</originalsourceid><addsrcrecordid>eNpdkctOwzAQRS0EEuXxAYiNJTZsUvxK7Cyr8BaFRUEsIycZgyGNi50U9e9xVMSCzYxmdO7oai5CJ5RMKSX5xf1iVkwZoemUCakklTtoQtNUJYQQtYsmRHKexH22jw5C-CCECqHYBIVZo1e9XQO-HPoNLjZ1a7s3bDu8gC44jx-h_3b-M-BX27_jqw782wbfar-G0I_kSxhr4bo4DW4IybNdAp5r_-nWuHjX8ZLuGnzdDrbBc9dAG47QntFtgOPffoherq-ei9vk4enmrpg9JDXP8j6ppEhFlUlqGp1WmdHMEKZ1JWkOVNWmroxReVOrGrQ0jDVC5LxihkqgjOSSH6Lz7d2Vd19D9FsubaihbXUH0WlJpVSEj5-I6Nk_9MMNvovuIsWV4oKINFJ0S9XeheDBlCtvl9pvSkrKMYZyjKEcYyh_Y4ia063GAsAfL1km8kzxH7sehHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738834045</pqid></control><display><type>article</type><title>Adaptive Duty Cycling in Sensor Networks With Energy Harvesting Using Continuous-Time Markov Chain and Fluid Models</title><source>IEEE Electronic Library (IEL)</source><creator>Chan, Wai Hong Ronald ; Zhang, Pengfei ; Nevat, Ido ; Nagarajan, Sai Ganesh ; Valera, Alvin C. ; Tan, Hwee-Xian ; Gautam, Natarajan</creator><creatorcontrib>Chan, Wai Hong Ronald ; Zhang, Pengfei ; Nevat, Ido ; Nagarajan, Sai Ganesh ; Valera, Alvin C. ; Tan, Hwee-Xian ; Gautam, Natarajan</creatorcontrib><description>The dynamic and unpredictable nature of energy harvesting sources available for wireless sensor networks, and the time variation in network statistics like packet transmission rates and link qualities, necessitate the use of adaptive duty cycling techniques. Such adaptive control allows sensor nodes to achieve long-run energy neutrality, where energy supply and demand are balanced in a dynamic environment such that the nodes function continuously. In this paper, we develop a new framework enabling an adaptive duty cycling scheme for sensor networks that takes into account the node battery level, ambient energy that can be harvested, and application-level QoS requirements. We model the system as a Markov decision process (MDP) that modifies its state transition policy using reinforcement learning. The MDP uses continuous time Markov chains (CTMCs) to model the network state of a node to obtain key QoS metrics like latency, loss probability, and power consumption, as well as to model the node battery level taking into account physically feasible rates of change. We show that with an appropriate choice of the reward function for the MDP, as well as a suitable learning rate, exploitation probability, and discount factor, the need to maintain minimum QoS levels for optimal network performance can be balanced with the need to promote the maintenance of a finite battery level to ensure node operability. Extensive simulation results show the benefit of our algorithm for different reward functions and parameters.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2015.2478717</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>adaptive duty cycle ; Adaptive systems ; Batteries ; Battery ; continuous-time Markov chain ; Cycles ; Dynamics ; Energy harvesting ; fluid model ; Markov analysis ; Markov decision process ; Mathematical models ; Measurement ; Networks ; Power demand ; Quality of service ; Quality of service architectures ; reinforcement learning ; Sensors ; Sustainable development ; Wireless sensor networks</subject><ispartof>IEEE journal on selected areas in communications, 2015-12, Vol.33 (12), p.2687-2700</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-b7454b671fda5b6fa2f02aab719e18cfcbff89dc8cea7f22d4493b2f17e120973</citedby><cites>FETCH-LOGICAL-c369t-b7454b671fda5b6fa2f02aab719e18cfcbff89dc8cea7f22d4493b2f17e120973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7264968$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7264968$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chan, Wai Hong Ronald</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Nevat, Ido</creatorcontrib><creatorcontrib>Nagarajan, Sai Ganesh</creatorcontrib><creatorcontrib>Valera, Alvin C.</creatorcontrib><creatorcontrib>Tan, Hwee-Xian</creatorcontrib><creatorcontrib>Gautam, Natarajan</creatorcontrib><title>Adaptive Duty Cycling in Sensor Networks With Energy Harvesting Using Continuous-Time Markov Chain and Fluid Models</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>The dynamic and unpredictable nature of energy harvesting sources available for wireless sensor networks, and the time variation in network statistics like packet transmission rates and link qualities, necessitate the use of adaptive duty cycling techniques. Such adaptive control allows sensor nodes to achieve long-run energy neutrality, where energy supply and demand are balanced in a dynamic environment such that the nodes function continuously. In this paper, we develop a new framework enabling an adaptive duty cycling scheme for sensor networks that takes into account the node battery level, ambient energy that can be harvested, and application-level QoS requirements. We model the system as a Markov decision process (MDP) that modifies its state transition policy using reinforcement learning. The MDP uses continuous time Markov chains (CTMCs) to model the network state of a node to obtain key QoS metrics like latency, loss probability, and power consumption, as well as to model the node battery level taking into account physically feasible rates of change. We show that with an appropriate choice of the reward function for the MDP, as well as a suitable learning rate, exploitation probability, and discount factor, the need to maintain minimum QoS levels for optimal network performance can be balanced with the need to promote the maintenance of a finite battery level to ensure node operability. Extensive simulation results show the benefit of our algorithm for different reward functions and parameters.</description><subject>adaptive duty cycle</subject><subject>Adaptive systems</subject><subject>Batteries</subject><subject>Battery</subject><subject>continuous-time Markov chain</subject><subject>Cycles</subject><subject>Dynamics</subject><subject>Energy harvesting</subject><subject>fluid model</subject><subject>Markov analysis</subject><subject>Markov decision process</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Networks</subject><subject>Power demand</subject><subject>Quality of service</subject><subject>Quality of service architectures</subject><subject>reinforcement learning</subject><subject>Sensors</subject><subject>Sustainable development</subject><subject>Wireless sensor networks</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkctOwzAQRS0EEuXxAYiNJTZsUvxK7Cyr8BaFRUEsIycZgyGNi50U9e9xVMSCzYxmdO7oai5CJ5RMKSX5xf1iVkwZoemUCakklTtoQtNUJYQQtYsmRHKexH22jw5C-CCECqHYBIVZo1e9XQO-HPoNLjZ1a7s3bDu8gC44jx-h_3b-M-BX27_jqw782wbfar-G0I_kSxhr4bo4DW4IybNdAp5r_-nWuHjX8ZLuGnzdDrbBc9dAG47QntFtgOPffoherq-ei9vk4enmrpg9JDXP8j6ppEhFlUlqGp1WmdHMEKZ1JWkOVNWmroxReVOrGrQ0jDVC5LxihkqgjOSSH6Lz7d2Vd19D9FsubaihbXUH0WlJpVSEj5-I6Nk_9MMNvovuIsWV4oKINFJ0S9XeheDBlCtvl9pvSkrKMYZyjKEcYyh_Y4ia063GAsAfL1km8kzxH7sehHg</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Chan, Wai Hong Ronald</creator><creator>Zhang, Pengfei</creator><creator>Nevat, Ido</creator><creator>Nagarajan, Sai Ganesh</creator><creator>Valera, Alvin C.</creator><creator>Tan, Hwee-Xian</creator><creator>Gautam, Natarajan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201512</creationdate><title>Adaptive Duty Cycling in Sensor Networks With Energy Harvesting Using Continuous-Time Markov Chain and Fluid Models</title><author>Chan, Wai Hong Ronald ; Zhang, Pengfei ; Nevat, Ido ; Nagarajan, Sai Ganesh ; Valera, Alvin C. ; Tan, Hwee-Xian ; Gautam, Natarajan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-b7454b671fda5b6fa2f02aab719e18cfcbff89dc8cea7f22d4493b2f17e120973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>adaptive duty cycle</topic><topic>Adaptive systems</topic><topic>Batteries</topic><topic>Battery</topic><topic>continuous-time Markov chain</topic><topic>Cycles</topic><topic>Dynamics</topic><topic>Energy harvesting</topic><topic>fluid model</topic><topic>Markov analysis</topic><topic>Markov decision process</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Networks</topic><topic>Power demand</topic><topic>Quality of service</topic><topic>Quality of service architectures</topic><topic>reinforcement learning</topic><topic>Sensors</topic><topic>Sustainable development</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Wai Hong Ronald</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Nevat, Ido</creatorcontrib><creatorcontrib>Nagarajan, Sai Ganesh</creatorcontrib><creatorcontrib>Valera, Alvin C.</creatorcontrib><creatorcontrib>Tan, Hwee-Xian</creatorcontrib><creatorcontrib>Gautam, Natarajan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chan, Wai Hong Ronald</au><au>Zhang, Pengfei</au><au>Nevat, Ido</au><au>Nagarajan, Sai Ganesh</au><au>Valera, Alvin C.</au><au>Tan, Hwee-Xian</au><au>Gautam, Natarajan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Duty Cycling in Sensor Networks With Energy Harvesting Using Continuous-Time Markov Chain and Fluid Models</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2015-12</date><risdate>2015</risdate><volume>33</volume><issue>12</issue><spage>2687</spage><epage>2700</epage><pages>2687-2700</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>The dynamic and unpredictable nature of energy harvesting sources available for wireless sensor networks, and the time variation in network statistics like packet transmission rates and link qualities, necessitate the use of adaptive duty cycling techniques. Such adaptive control allows sensor nodes to achieve long-run energy neutrality, where energy supply and demand are balanced in a dynamic environment such that the nodes function continuously. In this paper, we develop a new framework enabling an adaptive duty cycling scheme for sensor networks that takes into account the node battery level, ambient energy that can be harvested, and application-level QoS requirements. We model the system as a Markov decision process (MDP) that modifies its state transition policy using reinforcement learning. The MDP uses continuous time Markov chains (CTMCs) to model the network state of a node to obtain key QoS metrics like latency, loss probability, and power consumption, as well as to model the node battery level taking into account physically feasible rates of change. We show that with an appropriate choice of the reward function for the MDP, as well as a suitable learning rate, exploitation probability, and discount factor, the need to maintain minimum QoS levels for optimal network performance can be balanced with the need to promote the maintenance of a finite battery level to ensure node operability. Extensive simulation results show the benefit of our algorithm for different reward functions and parameters.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2015.2478717</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2015-12, Vol.33 (12), p.2687-2700 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_proquest_journals_1738834045 |
source | IEEE Electronic Library (IEL) |
subjects | adaptive duty cycle Adaptive systems Batteries Battery continuous-time Markov chain Cycles Dynamics Energy harvesting fluid model Markov analysis Markov decision process Mathematical models Measurement Networks Power demand Quality of service Quality of service architectures reinforcement learning Sensors Sustainable development Wireless sensor networks |
title | Adaptive Duty Cycling in Sensor Networks With Energy Harvesting Using Continuous-Time Markov Chain and Fluid Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Duty%20Cycling%20in%20Sensor%20Networks%20With%20Energy%20Harvesting%20Using%20Continuous-Time%20Markov%20Chain%20and%20Fluid%20Models&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Chan,%20Wai%20Hong%20Ronald&rft.date=2015-12&rft.volume=33&rft.issue=12&rft.spage=2687&rft.epage=2700&rft.pages=2687-2700&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2015.2478717&rft_dat=%3Cproquest_RIE%3E3883599721%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738834045&rft_id=info:pmid/&rft_ieee_id=7264968&rfr_iscdi=true |