Deciphering tissue-induced Klebsiella pneumoniae lipid A structure

The outcome of an infection depends on host recognition of the pathogen, hence leading to the activation of signaling pathways controlling defense responses. A long-held belief is that the modification of the lipid A moiety of the lipopolysaccharide could help Gram-negative pathogens to evade innate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-11, Vol.112 (46), p.E6369-E6378
Hauptverfasser: Llobet, Enrique, Martínez-Moliner, Verónica, Moranta, David, Dahlström, Käthe M, Regueiro, Verónica, Tomás, Anna, Cano, Victoria, Pérez-Gutiérrez, Camino, Frank, Christian G, Fernández-Carrasco, Helena, Insua, José Luis, Salminen, Tiina A, Garmendia, Junkal, Bengoechea, José A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E6378
container_issue 46
container_start_page E6369
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Llobet, Enrique
Martínez-Moliner, Verónica
Moranta, David
Dahlström, Käthe M
Regueiro, Verónica
Tomás, Anna
Cano, Victoria
Pérez-Gutiérrez, Camino
Frank, Christian G
Fernández-Carrasco, Helena
Insua, José Luis
Salminen, Tiina A
Garmendia, Junkal
Bengoechea, José A
description The outcome of an infection depends on host recognition of the pathogen, hence leading to the activation of signaling pathways controlling defense responses. A long-held belief is that the modification of the lipid A moiety of the lipopolysaccharide could help Gram-negative pathogens to evade innate immunity. However, direct evidence that this happens in vivo is lacking. Here we report the lipid A expressed in the tissues of infected mice by the human pathogen Klebsiella pneumoniae. Our findings demonstrate that Klebsiella remodels its lipid A in a tissue-dependent manner. Lipid A species found in the lungs are consistent with a 2-hydroxyacyl-modified lipid A dependent on the PhoPQ-regulated oxygenase LpxO. The in vivo lipid A pattern is lost in minimally passaged bacteria isolated from the tissues. LpxO-dependent modification reduces the activation of inflammatory responses and mediates resistance to antimicrobial peptides. An lpxO mutant is attenuated in vivo thereby highlighting the importance of this lipid A modification in Klebsiella infection biology. Colistin, one of the last options to treat multidrug-resistant Klebsiella infections, triggers the in vivo lipid A pattern. Moreover, colistin-resistant isolates already express the in vivo lipid A pattern. In these isolates, LpxO-dependent lipid A modification mediates resistance to colistin. Deciphering the lipid A expressed in vivo opens the possibility of designing novel therapeutics targeting the enzymes responsible for the in vivo lipid A pattern.
doi_str_mv 10.1073/pnas.1508820112
format Article
fullrecord <record><control><sourceid>proquest_pnas_</sourceid><recordid>TN_cdi_proquest_journals_1736918503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762376134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-4b127a83a8be2497bfb3abc8e5c3158a952ae060b26c1a1dd1391b1b22e9ac8f3</originalsourceid><addsrcrecordid>eNqNkTtvFTEQhS0EIpdATYdWoqHZxOO3G6S8eIhINFBbtndu4mjv7mKvkfj37CaXy6OimmK-OTNnDiEvgZ4A1fx0Gnw5AUmNYRSAPSIboBZaJSx9TDaUMt0awcQReVbKHaXUSkOfkiOmpDba6g05v8SYplvMabhp5lRKxTYNXY3YNZ96DCVh3_tmGrDuxiF5bPo0pa45a8qca5xrxufkydb3BV_s6zH5-u7qy8WH9vrz-48XZ9dtFNrOrQjAtDfcm4BMWB22gfsQDcrIQRpvJfNIFQ1MRfDQdcAtBAiMofXRbPkxefugO9Wwwy7iMGffuymnnc8_3OiT-7szpFt3M353QkkpBSwCb_YCefxWscxul0pc_Q041uJAK8a1Ai7-A-WScynu0df_oHdjzcPyiZVSFoykfKFOH6iYx1Iybg93A3VrlG6N0v2Ocpl49afdA_8ruwVo9sA6eZADthh2V2pZzX8CfRqlGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1736918503</pqid></control><display><type>article</type><title>Deciphering tissue-induced Klebsiella pneumoniae lipid A structure</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Llobet, Enrique ; Martínez-Moliner, Verónica ; Moranta, David ; Dahlström, Käthe M ; Regueiro, Verónica ; Tomás, Anna ; Cano, Victoria ; Pérez-Gutiérrez, Camino ; Frank, Christian G ; Fernández-Carrasco, Helena ; Insua, José Luis ; Salminen, Tiina A ; Garmendia, Junkal ; Bengoechea, José A</creator><creatorcontrib>Llobet, Enrique ; Martínez-Moliner, Verónica ; Moranta, David ; Dahlström, Käthe M ; Regueiro, Verónica ; Tomás, Anna ; Cano, Victoria ; Pérez-Gutiérrez, Camino ; Frank, Christian G ; Fernández-Carrasco, Helena ; Insua, José Luis ; Salminen, Tiina A ; Garmendia, Junkal ; Bengoechea, José A</creatorcontrib><description>The outcome of an infection depends on host recognition of the pathogen, hence leading to the activation of signaling pathways controlling defense responses. A long-held belief is that the modification of the lipid A moiety of the lipopolysaccharide could help Gram-negative pathogens to evade innate immunity. However, direct evidence that this happens in vivo is lacking. Here we report the lipid A expressed in the tissues of infected mice by the human pathogen Klebsiella pneumoniae. Our findings demonstrate that Klebsiella remodels its lipid A in a tissue-dependent manner. Lipid A species found in the lungs are consistent with a 2-hydroxyacyl-modified lipid A dependent on the PhoPQ-regulated oxygenase LpxO. The in vivo lipid A pattern is lost in minimally passaged bacteria isolated from the tissues. LpxO-dependent modification reduces the activation of inflammatory responses and mediates resistance to antimicrobial peptides. An lpxO mutant is attenuated in vivo thereby highlighting the importance of this lipid A modification in Klebsiella infection biology. Colistin, one of the last options to treat multidrug-resistant Klebsiella infections, triggers the in vivo lipid A pattern. Moreover, colistin-resistant isolates already express the in vivo lipid A pattern. In these isolates, LpxO-dependent lipid A modification mediates resistance to colistin. Deciphering the lipid A expressed in vivo opens the possibility of designing novel therapeutics targeting the enzymes responsible for the in vivo lipid A pattern.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1508820112</identifier><identifier>PMID: 26578797</identifier><language>eng</language><publisher>United States: National Acad Sciences</publisher><subject>Animals ; Biological Sciences ; Enzymes ; Gram-negative bacteria ; Humans ; Klebsiella Infections - genetics ; Klebsiella Infections - metabolism ; Klebsiella Infections - pathology ; Klebsiella pneumoniae ; Klebsiella pneumoniae - genetics ; Klebsiella pneumoniae - metabolism ; Lipid A - biosynthesis ; Lipid A - chemistry ; Lipid A - genetics ; Lipids ; Lung - microbiology ; Mice ; Molecular Structure ; Organ Specificity ; Peptides ; PNAS Plus ; Tissues</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-11, Vol.112 (46), p.E6369-E6378</ispartof><rights>Copyright National Academy of Sciences Nov 17, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-4b127a83a8be2497bfb3abc8e5c3158a952ae060b26c1a1dd1391b1b22e9ac8f3</citedby><cites>FETCH-LOGICAL-c479t-4b127a83a8be2497bfb3abc8e5c3158a952ae060b26c1a1dd1391b1b22e9ac8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/46.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655541/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655541/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26578797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Llobet, Enrique</creatorcontrib><creatorcontrib>Martínez-Moliner, Verónica</creatorcontrib><creatorcontrib>Moranta, David</creatorcontrib><creatorcontrib>Dahlström, Käthe M</creatorcontrib><creatorcontrib>Regueiro, Verónica</creatorcontrib><creatorcontrib>Tomás, Anna</creatorcontrib><creatorcontrib>Cano, Victoria</creatorcontrib><creatorcontrib>Pérez-Gutiérrez, Camino</creatorcontrib><creatorcontrib>Frank, Christian G</creatorcontrib><creatorcontrib>Fernández-Carrasco, Helena</creatorcontrib><creatorcontrib>Insua, José Luis</creatorcontrib><creatorcontrib>Salminen, Tiina A</creatorcontrib><creatorcontrib>Garmendia, Junkal</creatorcontrib><creatorcontrib>Bengoechea, José A</creatorcontrib><title>Deciphering tissue-induced Klebsiella pneumoniae lipid A structure</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The outcome of an infection depends on host recognition of the pathogen, hence leading to the activation of signaling pathways controlling defense responses. A long-held belief is that the modification of the lipid A moiety of the lipopolysaccharide could help Gram-negative pathogens to evade innate immunity. However, direct evidence that this happens in vivo is lacking. Here we report the lipid A expressed in the tissues of infected mice by the human pathogen Klebsiella pneumoniae. Our findings demonstrate that Klebsiella remodels its lipid A in a tissue-dependent manner. Lipid A species found in the lungs are consistent with a 2-hydroxyacyl-modified lipid A dependent on the PhoPQ-regulated oxygenase LpxO. The in vivo lipid A pattern is lost in minimally passaged bacteria isolated from the tissues. LpxO-dependent modification reduces the activation of inflammatory responses and mediates resistance to antimicrobial peptides. An lpxO mutant is attenuated in vivo thereby highlighting the importance of this lipid A modification in Klebsiella infection biology. Colistin, one of the last options to treat multidrug-resistant Klebsiella infections, triggers the in vivo lipid A pattern. Moreover, colistin-resistant isolates already express the in vivo lipid A pattern. In these isolates, LpxO-dependent lipid A modification mediates resistance to colistin. Deciphering the lipid A expressed in vivo opens the possibility of designing novel therapeutics targeting the enzymes responsible for the in vivo lipid A pattern.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Enzymes</subject><subject>Gram-negative bacteria</subject><subject>Humans</subject><subject>Klebsiella Infections - genetics</subject><subject>Klebsiella Infections - metabolism</subject><subject>Klebsiella Infections - pathology</subject><subject>Klebsiella pneumoniae</subject><subject>Klebsiella pneumoniae - genetics</subject><subject>Klebsiella pneumoniae - metabolism</subject><subject>Lipid A - biosynthesis</subject><subject>Lipid A - chemistry</subject><subject>Lipid A - genetics</subject><subject>Lipids</subject><subject>Lung - microbiology</subject><subject>Mice</subject><subject>Molecular Structure</subject><subject>Organ Specificity</subject><subject>Peptides</subject><subject>PNAS Plus</subject><subject>Tissues</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkTtvFTEQhS0EIpdATYdWoqHZxOO3G6S8eIhINFBbtndu4mjv7mKvkfj37CaXy6OimmK-OTNnDiEvgZ4A1fx0Gnw5AUmNYRSAPSIboBZaJSx9TDaUMt0awcQReVbKHaXUSkOfkiOmpDba6g05v8SYplvMabhp5lRKxTYNXY3YNZ96DCVh3_tmGrDuxiF5bPo0pa45a8qca5xrxufkydb3BV_s6zH5-u7qy8WH9vrz-48XZ9dtFNrOrQjAtDfcm4BMWB22gfsQDcrIQRpvJfNIFQ1MRfDQdcAtBAiMofXRbPkxefugO9Wwwy7iMGffuymnnc8_3OiT-7szpFt3M353QkkpBSwCb_YCefxWscxul0pc_Q041uJAK8a1Ai7-A-WScynu0df_oHdjzcPyiZVSFoykfKFOH6iYx1Iybg93A3VrlG6N0v2Ocpl49afdA_8ruwVo9sA6eZADthh2V2pZzX8CfRqlGg</recordid><startdate>20151117</startdate><enddate>20151117</enddate><creator>Llobet, Enrique</creator><creator>Martínez-Moliner, Verónica</creator><creator>Moranta, David</creator><creator>Dahlström, Käthe M</creator><creator>Regueiro, Verónica</creator><creator>Tomás, Anna</creator><creator>Cano, Victoria</creator><creator>Pérez-Gutiérrez, Camino</creator><creator>Frank, Christian G</creator><creator>Fernández-Carrasco, Helena</creator><creator>Insua, José Luis</creator><creator>Salminen, Tiina A</creator><creator>Garmendia, Junkal</creator><creator>Bengoechea, José A</creator><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151117</creationdate><title>Deciphering tissue-induced Klebsiella pneumoniae lipid A structure</title><author>Llobet, Enrique ; Martínez-Moliner, Verónica ; Moranta, David ; Dahlström, Käthe M ; Regueiro, Verónica ; Tomás, Anna ; Cano, Victoria ; Pérez-Gutiérrez, Camino ; Frank, Christian G ; Fernández-Carrasco, Helena ; Insua, José Luis ; Salminen, Tiina A ; Garmendia, Junkal ; Bengoechea, José A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-4b127a83a8be2497bfb3abc8e5c3158a952ae060b26c1a1dd1391b1b22e9ac8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Enzymes</topic><topic>Gram-negative bacteria</topic><topic>Humans</topic><topic>Klebsiella Infections - genetics</topic><topic>Klebsiella Infections - metabolism</topic><topic>Klebsiella Infections - pathology</topic><topic>Klebsiella pneumoniae</topic><topic>Klebsiella pneumoniae - genetics</topic><topic>Klebsiella pneumoniae - metabolism</topic><topic>Lipid A - biosynthesis</topic><topic>Lipid A - chemistry</topic><topic>Lipid A - genetics</topic><topic>Lipids</topic><topic>Lung - microbiology</topic><topic>Mice</topic><topic>Molecular Structure</topic><topic>Organ Specificity</topic><topic>Peptides</topic><topic>PNAS Plus</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Llobet, Enrique</creatorcontrib><creatorcontrib>Martínez-Moliner, Verónica</creatorcontrib><creatorcontrib>Moranta, David</creatorcontrib><creatorcontrib>Dahlström, Käthe M</creatorcontrib><creatorcontrib>Regueiro, Verónica</creatorcontrib><creatorcontrib>Tomás, Anna</creatorcontrib><creatorcontrib>Cano, Victoria</creatorcontrib><creatorcontrib>Pérez-Gutiérrez, Camino</creatorcontrib><creatorcontrib>Frank, Christian G</creatorcontrib><creatorcontrib>Fernández-Carrasco, Helena</creatorcontrib><creatorcontrib>Insua, José Luis</creatorcontrib><creatorcontrib>Salminen, Tiina A</creatorcontrib><creatorcontrib>Garmendia, Junkal</creatorcontrib><creatorcontrib>Bengoechea, José A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Llobet, Enrique</au><au>Martínez-Moliner, Verónica</au><au>Moranta, David</au><au>Dahlström, Käthe M</au><au>Regueiro, Verónica</au><au>Tomás, Anna</au><au>Cano, Victoria</au><au>Pérez-Gutiérrez, Camino</au><au>Frank, Christian G</au><au>Fernández-Carrasco, Helena</au><au>Insua, José Luis</au><au>Salminen, Tiina A</au><au>Garmendia, Junkal</au><au>Bengoechea, José A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering tissue-induced Klebsiella pneumoniae lipid A structure</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-11-17</date><risdate>2015</risdate><volume>112</volume><issue>46</issue><spage>E6369</spage><epage>E6378</epage><pages>E6369-E6378</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The outcome of an infection depends on host recognition of the pathogen, hence leading to the activation of signaling pathways controlling defense responses. A long-held belief is that the modification of the lipid A moiety of the lipopolysaccharide could help Gram-negative pathogens to evade innate immunity. However, direct evidence that this happens in vivo is lacking. Here we report the lipid A expressed in the tissues of infected mice by the human pathogen Klebsiella pneumoniae. Our findings demonstrate that Klebsiella remodels its lipid A in a tissue-dependent manner. Lipid A species found in the lungs are consistent with a 2-hydroxyacyl-modified lipid A dependent on the PhoPQ-regulated oxygenase LpxO. The in vivo lipid A pattern is lost in minimally passaged bacteria isolated from the tissues. LpxO-dependent modification reduces the activation of inflammatory responses and mediates resistance to antimicrobial peptides. An lpxO mutant is attenuated in vivo thereby highlighting the importance of this lipid A modification in Klebsiella infection biology. Colistin, one of the last options to treat multidrug-resistant Klebsiella infections, triggers the in vivo lipid A pattern. Moreover, colistin-resistant isolates already express the in vivo lipid A pattern. In these isolates, LpxO-dependent lipid A modification mediates resistance to colistin. Deciphering the lipid A expressed in vivo opens the possibility of designing novel therapeutics targeting the enzymes responsible for the in vivo lipid A pattern.</abstract><cop>United States</cop><pub>National Acad Sciences</pub><pmid>26578797</pmid><doi>10.1073/pnas.1508820112</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-11, Vol.112 (46), p.E6369-E6378
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1736918503
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Enzymes
Gram-negative bacteria
Humans
Klebsiella Infections - genetics
Klebsiella Infections - metabolism
Klebsiella Infections - pathology
Klebsiella pneumoniae
Klebsiella pneumoniae - genetics
Klebsiella pneumoniae - metabolism
Lipid A - biosynthesis
Lipid A - chemistry
Lipid A - genetics
Lipids
Lung - microbiology
Mice
Molecular Structure
Organ Specificity
Peptides
PNAS Plus
Tissues
title Deciphering tissue-induced Klebsiella pneumoniae lipid A structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20tissue-induced%20Klebsiella%20pneumoniae%20lipid%20A%20structure&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Llobet,%20Enrique&rft.date=2015-11-17&rft.volume=112&rft.issue=46&rft.spage=E6369&rft.epage=E6378&rft.pages=E6369-E6378&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1508820112&rft_dat=%3Cproquest_pnas_%3E1762376134%3C/proquest_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1736918503&rft_id=info:pmid/26578797&rfr_iscdi=true