Reactivity and stability investigation of supported molybdenum oxide catalysts for the hydrodeoxygenation (HDO) of m-cresol

[Display omitted] •Supported molybdenum oxide catalysts effectively transform m-cresol into toluene under mild conditions.•Highest HDO activity and stability is obtained for catalysts that stabilize Mo5+ and Mo3+ species.•HDO reactivity is inversely correlated to support cation electronegativity, wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of catalysis 2015-11, Vol.331, p.86-97
Hauptverfasser: Shetty, Manish, Murugappan, Karthick, Prasomsri, Teerawit, Green, William H., Román-Leshkov, Yuriy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue
container_start_page 86
container_title Journal of catalysis
container_volume 331
creator Shetty, Manish
Murugappan, Karthick
Prasomsri, Teerawit
Green, William H.
Román-Leshkov, Yuriy
description [Display omitted] •Supported molybdenum oxide catalysts effectively transform m-cresol into toluene under mild conditions.•Highest HDO activity and stability is obtained for catalysts that stabilize Mo5+ and Mo3+ species.•HDO reactivity is inversely correlated to support cation electronegativity, with the exception of MoO3/CeO2.•Catalyst deactivation is reversible. The vapor-phase hydrodeoxygenation (HDO) of m-cresol is investigated at 593K and H2 pressures ⩽1bar for supported catalysts comprised of 10wt% MoO3 dispersed over SiO2, γAl2O3, TiO2, ZrO2, and CeO2. Reactivity data show that all catalysts selectively cleave CO bonds without saturating the aromatic ring, thus effectively transforming m-cresol into toluene at moderate to high conversions. MoO3/ZrO2 and MoO3/TiO2 feature the highest initial site time yields (23.4 and 13.9h−1, respectively) and lowest first-order deactivation rate constants (0.013 and 0.006h−1, respectively) of all catalysts tested after ca. 100h on stream. Characterization studies demonstrate that the supports play an important role in stabilizing partially reduced, coordinatively unsaturated (CU) sites in surface oligomeric Mo moieties. Post-reaction X-ray photoelectron spectroscopy shows that the catalysts with higher activity feature larger proportions of intermediate oxidation species (Mo5+ and Mo3+). In contrast, the catalysts with lower reactivity show different oxidation states: bulk MoO3 features mostly Mo4+ and metallic Mo species, while MoO3/CeO2 features a high proportion of Mo6+ species. An inverse correlation is established between the catalyst activity and both the maximum hydrogen consumption temperature obtained during temperature programmed reduction, and the support cation electronegativity (with the exception of MoO3/CeO2).
doi_str_mv 10.1016/j.jcat.2015.07.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1734625437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021951715002754</els_id><sourcerecordid>3871574271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-600a7dc5500c42e33206c305cdd0bb923a0490034010b14ed4f13fbbd0fbfb323</originalsourceid><addsrcrecordid>eNp9UMtq3DAUFaWFTtP-QFeCbtKF3auH7Rq6CZPHBAYCJVkLPa4TGY81lTTDmPx8bKbrrC4HzuOeQ8h3BiUDVv_qy97qXHJgVQlNCUJ-ICsGLRS8buVHsgLgrGgr1nwmX1LqARirqt8r8voXtc3-6PNE9ehoytr4YUF-PGLK_llnH0YaOpoO-32IGR3dhWEyDsfDjoaTd0jnbD1MKSfahUjzC9KXycXgMJymZxzPFpeb64efi9GusBFTGL6ST50eEn77fy_I0-3N43pTbB_u7tdX28JKwXJRA-jG2aoCsJKjEBxqK6CyzoExLRcaZAtzZWBgmEQnOyY6Yxx0pjOCiwvy4-y7j-HfYS6l-nCI4xypWCNkzSspmpnFzywbQ0oRO7WPfqfjpBioZWTVq2VktYysoFFz4iz6cxbh_P_RY1TJehwtOh_RZuWCf0_-Bm41h5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734625437</pqid></control><display><type>article</type><title>Reactivity and stability investigation of supported molybdenum oxide catalysts for the hydrodeoxygenation (HDO) of m-cresol</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Shetty, Manish ; Murugappan, Karthick ; Prasomsri, Teerawit ; Green, William H. ; Román-Leshkov, Yuriy</creator><creatorcontrib>Shetty, Manish ; Murugappan, Karthick ; Prasomsri, Teerawit ; Green, William H. ; Román-Leshkov, Yuriy</creatorcontrib><description>[Display omitted] •Supported molybdenum oxide catalysts effectively transform m-cresol into toluene under mild conditions.•Highest HDO activity and stability is obtained for catalysts that stabilize Mo5+ and Mo3+ species.•HDO reactivity is inversely correlated to support cation electronegativity, with the exception of MoO3/CeO2.•Catalyst deactivation is reversible. The vapor-phase hydrodeoxygenation (HDO) of m-cresol is investigated at 593K and H2 pressures ⩽1bar for supported catalysts comprised of 10wt% MoO3 dispersed over SiO2, γAl2O3, TiO2, ZrO2, and CeO2. Reactivity data show that all catalysts selectively cleave CO bonds without saturating the aromatic ring, thus effectively transforming m-cresol into toluene at moderate to high conversions. MoO3/ZrO2 and MoO3/TiO2 feature the highest initial site time yields (23.4 and 13.9h−1, respectively) and lowest first-order deactivation rate constants (0.013 and 0.006h−1, respectively) of all catalysts tested after ca. 100h on stream. Characterization studies demonstrate that the supports play an important role in stabilizing partially reduced, coordinatively unsaturated (CU) sites in surface oligomeric Mo moieties. Post-reaction X-ray photoelectron spectroscopy shows that the catalysts with higher activity feature larger proportions of intermediate oxidation species (Mo5+ and Mo3+). In contrast, the catalysts with lower reactivity show different oxidation states: bulk MoO3 features mostly Mo4+ and metallic Mo species, while MoO3/CeO2 features a high proportion of Mo6+ species. An inverse correlation is established between the catalyst activity and both the maximum hydrogen consumption temperature obtained during temperature programmed reduction, and the support cation electronegativity (with the exception of MoO3/CeO2).</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1016/j.jcat.2015.07.034</identifier><language>eng</language><publisher>San Diego: Elsevier Inc</publisher><subject>Biomass conversion ; Hydrodeoxygenation (HDO) ; Lignin-derived oxygenates ; m-Cresol ; Metal–support interaction ; Supported molybdenum oxides</subject><ispartof>Journal of catalysis, 2015-11, Vol.331, p.86-97</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-600a7dc5500c42e33206c305cdd0bb923a0490034010b14ed4f13fbbd0fbfb323</citedby><cites>FETCH-LOGICAL-c431t-600a7dc5500c42e33206c305cdd0bb923a0490034010b14ed4f13fbbd0fbfb323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021951715002754$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shetty, Manish</creatorcontrib><creatorcontrib>Murugappan, Karthick</creatorcontrib><creatorcontrib>Prasomsri, Teerawit</creatorcontrib><creatorcontrib>Green, William H.</creatorcontrib><creatorcontrib>Román-Leshkov, Yuriy</creatorcontrib><title>Reactivity and stability investigation of supported molybdenum oxide catalysts for the hydrodeoxygenation (HDO) of m-cresol</title><title>Journal of catalysis</title><description>[Display omitted] •Supported molybdenum oxide catalysts effectively transform m-cresol into toluene under mild conditions.•Highest HDO activity and stability is obtained for catalysts that stabilize Mo5+ and Mo3+ species.•HDO reactivity is inversely correlated to support cation electronegativity, with the exception of MoO3/CeO2.•Catalyst deactivation is reversible. The vapor-phase hydrodeoxygenation (HDO) of m-cresol is investigated at 593K and H2 pressures ⩽1bar for supported catalysts comprised of 10wt% MoO3 dispersed over SiO2, γAl2O3, TiO2, ZrO2, and CeO2. Reactivity data show that all catalysts selectively cleave CO bonds without saturating the aromatic ring, thus effectively transforming m-cresol into toluene at moderate to high conversions. MoO3/ZrO2 and MoO3/TiO2 feature the highest initial site time yields (23.4 and 13.9h−1, respectively) and lowest first-order deactivation rate constants (0.013 and 0.006h−1, respectively) of all catalysts tested after ca. 100h on stream. Characterization studies demonstrate that the supports play an important role in stabilizing partially reduced, coordinatively unsaturated (CU) sites in surface oligomeric Mo moieties. Post-reaction X-ray photoelectron spectroscopy shows that the catalysts with higher activity feature larger proportions of intermediate oxidation species (Mo5+ and Mo3+). In contrast, the catalysts with lower reactivity show different oxidation states: bulk MoO3 features mostly Mo4+ and metallic Mo species, while MoO3/CeO2 features a high proportion of Mo6+ species. An inverse correlation is established between the catalyst activity and both the maximum hydrogen consumption temperature obtained during temperature programmed reduction, and the support cation electronegativity (with the exception of MoO3/CeO2).</description><subject>Biomass conversion</subject><subject>Hydrodeoxygenation (HDO)</subject><subject>Lignin-derived oxygenates</subject><subject>m-Cresol</subject><subject>Metal–support interaction</subject><subject>Supported molybdenum oxides</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UMtq3DAUFaWFTtP-QFeCbtKF3auH7Rq6CZPHBAYCJVkLPa4TGY81lTTDmPx8bKbrrC4HzuOeQ8h3BiUDVv_qy97qXHJgVQlNCUJ-ICsGLRS8buVHsgLgrGgr1nwmX1LqARirqt8r8voXtc3-6PNE9ehoytr4YUF-PGLK_llnH0YaOpoO-32IGR3dhWEyDsfDjoaTd0jnbD1MKSfahUjzC9KXycXgMJymZxzPFpeb64efi9GusBFTGL6ST50eEn77fy_I0-3N43pTbB_u7tdX28JKwXJRA-jG2aoCsJKjEBxqK6CyzoExLRcaZAtzZWBgmEQnOyY6Yxx0pjOCiwvy4-y7j-HfYS6l-nCI4xypWCNkzSspmpnFzywbQ0oRO7WPfqfjpBioZWTVq2VktYysoFFz4iz6cxbh_P_RY1TJehwtOh_RZuWCf0_-Bm41h5A</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Shetty, Manish</creator><creator>Murugappan, Karthick</creator><creator>Prasomsri, Teerawit</creator><creator>Green, William H.</creator><creator>Román-Leshkov, Yuriy</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151101</creationdate><title>Reactivity and stability investigation of supported molybdenum oxide catalysts for the hydrodeoxygenation (HDO) of m-cresol</title><author>Shetty, Manish ; Murugappan, Karthick ; Prasomsri, Teerawit ; Green, William H. ; Román-Leshkov, Yuriy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-600a7dc5500c42e33206c305cdd0bb923a0490034010b14ed4f13fbbd0fbfb323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biomass conversion</topic><topic>Hydrodeoxygenation (HDO)</topic><topic>Lignin-derived oxygenates</topic><topic>m-Cresol</topic><topic>Metal–support interaction</topic><topic>Supported molybdenum oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shetty, Manish</creatorcontrib><creatorcontrib>Murugappan, Karthick</creatorcontrib><creatorcontrib>Prasomsri, Teerawit</creatorcontrib><creatorcontrib>Green, William H.</creatorcontrib><creatorcontrib>Román-Leshkov, Yuriy</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shetty, Manish</au><au>Murugappan, Karthick</au><au>Prasomsri, Teerawit</au><au>Green, William H.</au><au>Román-Leshkov, Yuriy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactivity and stability investigation of supported molybdenum oxide catalysts for the hydrodeoxygenation (HDO) of m-cresol</atitle><jtitle>Journal of catalysis</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>331</volume><spage>86</spage><epage>97</epage><pages>86-97</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><abstract>[Display omitted] •Supported molybdenum oxide catalysts effectively transform m-cresol into toluene under mild conditions.•Highest HDO activity and stability is obtained for catalysts that stabilize Mo5+ and Mo3+ species.•HDO reactivity is inversely correlated to support cation electronegativity, with the exception of MoO3/CeO2.•Catalyst deactivation is reversible. The vapor-phase hydrodeoxygenation (HDO) of m-cresol is investigated at 593K and H2 pressures ⩽1bar for supported catalysts comprised of 10wt% MoO3 dispersed over SiO2, γAl2O3, TiO2, ZrO2, and CeO2. Reactivity data show that all catalysts selectively cleave CO bonds without saturating the aromatic ring, thus effectively transforming m-cresol into toluene at moderate to high conversions. MoO3/ZrO2 and MoO3/TiO2 feature the highest initial site time yields (23.4 and 13.9h−1, respectively) and lowest first-order deactivation rate constants (0.013 and 0.006h−1, respectively) of all catalysts tested after ca. 100h on stream. Characterization studies demonstrate that the supports play an important role in stabilizing partially reduced, coordinatively unsaturated (CU) sites in surface oligomeric Mo moieties. Post-reaction X-ray photoelectron spectroscopy shows that the catalysts with higher activity feature larger proportions of intermediate oxidation species (Mo5+ and Mo3+). In contrast, the catalysts with lower reactivity show different oxidation states: bulk MoO3 features mostly Mo4+ and metallic Mo species, while MoO3/CeO2 features a high proportion of Mo6+ species. An inverse correlation is established between the catalyst activity and both the maximum hydrogen consumption temperature obtained during temperature programmed reduction, and the support cation electronegativity (with the exception of MoO3/CeO2).</abstract><cop>San Diego</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcat.2015.07.034</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9517
ispartof Journal of catalysis, 2015-11, Vol.331, p.86-97
issn 0021-9517
1090-2694
language eng
recordid cdi_proquest_journals_1734625437
source Elsevier ScienceDirect Journals Complete
subjects Biomass conversion
Hydrodeoxygenation (HDO)
Lignin-derived oxygenates
m-Cresol
Metal–support interaction
Supported molybdenum oxides
title Reactivity and stability investigation of supported molybdenum oxide catalysts for the hydrodeoxygenation (HDO) of m-cresol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactivity%20and%20stability%20investigation%20of%20supported%20molybdenum%20oxide%20catalysts%20for%20the%20hydrodeoxygenation%20(HDO)%20of%20m-cresol&rft.jtitle=Journal%20of%20catalysis&rft.au=Shetty,%20Manish&rft.date=2015-11-01&rft.volume=331&rft.spage=86&rft.epage=97&rft.pages=86-97&rft.issn=0021-9517&rft.eissn=1090-2694&rft_id=info:doi/10.1016/j.jcat.2015.07.034&rft_dat=%3Cproquest_cross%3E3871574271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1734625437&rft_id=info:pmid/&rft_els_id=S0021951715002754&rfr_iscdi=true