Design and Analysis of the Randomized Response Technique
About a half century ago, in 1965, Warner proposed the randomized response method as a survey technique to reduce potential bias due to nonresponse and social desirability when asking questions about sensitive behaviors and beliefs. This method asks respondents to use a randomization device, such as...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2015-09, Vol.110 (511), p.1304-1319 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1319 |
---|---|
container_issue | 511 |
container_start_page | 1304 |
container_title | Journal of the American Statistical Association |
container_volume | 110 |
creator | Blair, Graeme Imai, Kosuke Zhou, Yang-Yang |
description | About a half century ago, in 1965, Warner proposed the randomized response method as a survey technique to reduce potential bias due to nonresponse and social desirability when asking questions about sensitive behaviors and beliefs. This method asks respondents to use a randomization device, such as a coin flip, whose outcome is unobserved by the interviewer. By introducing random noise, the method conceals individual responses and protects respondent privacy. While numerous methodological advances have been made, we find surprisingly few applications of this promising survey technique. In this article, we address this gap by (1) reviewing standard designs available to applied researchers, (2) developing various multivariate regression techniques for substantive analyses, (3) proposing power analyses to help improve research designs, (4) presenting new robust designs that are based on less stringent assumptions than those of the standard designs, and (5) making all described methods available through open-source software. We illustrate some of these methods with an original survey about militant groups in Nigeria. |
doi_str_mv | 10.1080/01621459.2015.1050028 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1734291267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24739725</jstor_id><sourcerecordid>24739725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-9c1cd31c1cc05631e250e867ae85079cfeece4d0585778953a972b743d05bd2c3</originalsourceid><addsrcrecordid>eNqFUV1LwzAULaLgnP6EYcEXXzrz0TTpm2N-wkCYG_gWsvR26-iSmXTI_PWmdIr4Yh6ScO459-SeRNEAoyFGAt0gnBGcsnxIEGYBYggRcRT1MKM8ITx9O_51P43OvF-jsLgQvUjcga-WJlamiEdG1Xtf-diWcbOCeBpAu6k-oYin4LfWeIhnoFemet_BeXRSqtrDxeHsR_OH-9n4KZm8PD6PR5NEpww1Sa6xLigOu0YsoxgIQyAyrkAwxHNdAmhIC8QE41zkjKqckwVPaYAWBdG0H113fbfOBlvfyE3lNdS1MmB3XmLORE4FS3mgXv2hru3OhaFaFk1JjknWsljH0s5676CUW1dtlNtLjGSbp_zOU7Z5ykOeQTfodGvfWPcjIsE4PJmF-m1Xr0xp3UZ9WFcXslH72rrSKaMrL-l_Fpddi1JZqZYuKOavgZGF3xIsD0N8AfwUjNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734291267</pqid></control><display><type>article</type><title>Design and Analysis of the Randomized Response Technique</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Taylor & Francis Journals Complete</source><creator>Blair, Graeme ; Imai, Kosuke ; Zhou, Yang-Yang</creator><creatorcontrib>Blair, Graeme ; Imai, Kosuke ; Zhou, Yang-Yang</creatorcontrib><description>About a half century ago, in 1965, Warner proposed the randomized response method as a survey technique to reduce potential bias due to nonresponse and social desirability when asking questions about sensitive behaviors and beliefs. This method asks respondents to use a randomization device, such as a coin flip, whose outcome is unobserved by the interviewer. By introducing random noise, the method conceals individual responses and protects respondent privacy. While numerous methodological advances have been made, we find surprisingly few applications of this promising survey technique. In this article, we address this gap by (1) reviewing standard designs available to applied researchers, (2) developing various multivariate regression techniques for substantive analyses, (3) proposing power analyses to help improve research designs, (4) presenting new robust designs that are based on less stringent assumptions than those of the standard designs, and (5) making all described methods available through open-source software. We illustrate some of these methods with an original survey about militant groups in Nigeria.</description><identifier>ISSN: 1537-274X</identifier><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2015.1050028</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Bias ; computer software ; data analysis ; human behavior ; Nigeria ; Open source software ; Power analysis ; Privacy ; Randomization ; Regression analysis ; Review ; Sensitive questions ; Social desirability bias ; Software ; Statistics ; surveys</subject><ispartof>Journal of the American Statistical Association, 2015-09, Vol.110 (511), p.1304-1319</ispartof><rights>American Statistical Association 2015</rights><rights>2015 American Statistical Association</rights><rights>Copyright Taylor & Francis Ltd. Sep 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-9c1cd31c1cc05631e250e867ae85079cfeece4d0585778953a972b743d05bd2c3</citedby><cites>FETCH-LOGICAL-c450t-9c1cd31c1cc05631e250e867ae85079cfeece4d0585778953a972b743d05bd2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24739725$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24739725$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254,59647,60436</link.rule.ids></links><search><creatorcontrib>Blair, Graeme</creatorcontrib><creatorcontrib>Imai, Kosuke</creatorcontrib><creatorcontrib>Zhou, Yang-Yang</creatorcontrib><title>Design and Analysis of the Randomized Response Technique</title><title>Journal of the American Statistical Association</title><description>About a half century ago, in 1965, Warner proposed the randomized response method as a survey technique to reduce potential bias due to nonresponse and social desirability when asking questions about sensitive behaviors and beliefs. This method asks respondents to use a randomization device, such as a coin flip, whose outcome is unobserved by the interviewer. By introducing random noise, the method conceals individual responses and protects respondent privacy. While numerous methodological advances have been made, we find surprisingly few applications of this promising survey technique. In this article, we address this gap by (1) reviewing standard designs available to applied researchers, (2) developing various multivariate regression techniques for substantive analyses, (3) proposing power analyses to help improve research designs, (4) presenting new robust designs that are based on less stringent assumptions than those of the standard designs, and (5) making all described methods available through open-source software. We illustrate some of these methods with an original survey about militant groups in Nigeria.</description><subject>Bias</subject><subject>computer software</subject><subject>data analysis</subject><subject>human behavior</subject><subject>Nigeria</subject><subject>Open source software</subject><subject>Power analysis</subject><subject>Privacy</subject><subject>Randomization</subject><subject>Regression analysis</subject><subject>Review</subject><subject>Sensitive questions</subject><subject>Social desirability bias</subject><subject>Software</subject><subject>Statistics</subject><subject>surveys</subject><issn>1537-274X</issn><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUV1LwzAULaLgnP6EYcEXXzrz0TTpm2N-wkCYG_gWsvR26-iSmXTI_PWmdIr4Yh6ScO459-SeRNEAoyFGAt0gnBGcsnxIEGYBYggRcRT1MKM8ITx9O_51P43OvF-jsLgQvUjcga-WJlamiEdG1Xtf-diWcbOCeBpAu6k-oYin4LfWeIhnoFemet_BeXRSqtrDxeHsR_OH-9n4KZm8PD6PR5NEpww1Sa6xLigOu0YsoxgIQyAyrkAwxHNdAmhIC8QE41zkjKqckwVPaYAWBdG0H113fbfOBlvfyE3lNdS1MmB3XmLORE4FS3mgXv2hru3OhaFaFk1JjknWsljH0s5676CUW1dtlNtLjGSbp_zOU7Z5ykOeQTfodGvfWPcjIsE4PJmF-m1Xr0xp3UZ9WFcXslH72rrSKaMrL-l_Fpddi1JZqZYuKOavgZGF3xIsD0N8AfwUjNE</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Blair, Graeme</creator><creator>Imai, Kosuke</creator><creator>Zhou, Yang-Yang</creator><general>Taylor & Francis</general><general>Taylor & Francis Group, LLC</general><general>Taylor & Francis Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20150901</creationdate><title>Design and Analysis of the Randomized Response Technique</title><author>Blair, Graeme ; Imai, Kosuke ; Zhou, Yang-Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-9c1cd31c1cc05631e250e867ae85079cfeece4d0585778953a972b743d05bd2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bias</topic><topic>computer software</topic><topic>data analysis</topic><topic>human behavior</topic><topic>Nigeria</topic><topic>Open source software</topic><topic>Power analysis</topic><topic>Privacy</topic><topic>Randomization</topic><topic>Regression analysis</topic><topic>Review</topic><topic>Sensitive questions</topic><topic>Social desirability bias</topic><topic>Software</topic><topic>Statistics</topic><topic>surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blair, Graeme</creatorcontrib><creatorcontrib>Imai, Kosuke</creatorcontrib><creatorcontrib>Zhou, Yang-Yang</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blair, Graeme</au><au>Imai, Kosuke</au><au>Zhou, Yang-Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Analysis of the Randomized Response Technique</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>110</volume><issue>511</issue><spage>1304</spage><epage>1319</epage><pages>1304-1319</pages><issn>1537-274X</issn><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>About a half century ago, in 1965, Warner proposed the randomized response method as a survey technique to reduce potential bias due to nonresponse and social desirability when asking questions about sensitive behaviors and beliefs. This method asks respondents to use a randomization device, such as a coin flip, whose outcome is unobserved by the interviewer. By introducing random noise, the method conceals individual responses and protects respondent privacy. While numerous methodological advances have been made, we find surprisingly few applications of this promising survey technique. In this article, we address this gap by (1) reviewing standard designs available to applied researchers, (2) developing various multivariate regression techniques for substantive analyses, (3) proposing power analyses to help improve research designs, (4) presenting new robust designs that are based on less stringent assumptions than those of the standard designs, and (5) making all described methods available through open-source software. We illustrate some of these methods with an original survey about militant groups in Nigeria.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/01621459.2015.1050028</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1537-274X |
ispartof | Journal of the American Statistical Association, 2015-09, Vol.110 (511), p.1304-1319 |
issn | 1537-274X 0162-1459 1537-274X |
language | eng |
recordid | cdi_proquest_journals_1734291267 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Taylor & Francis Journals Complete |
subjects | Bias computer software data analysis human behavior Nigeria Open source software Power analysis Privacy Randomization Regression analysis Review Sensitive questions Social desirability bias Software Statistics surveys |
title | Design and Analysis of the Randomized Response Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Analysis%20of%20the%20Randomized%20Response%20Technique&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Blair,%20Graeme&rft.date=2015-09-01&rft.volume=110&rft.issue=511&rft.spage=1304&rft.epage=1319&rft.pages=1304-1319&rft.issn=1537-274X&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.2015.1050028&rft_dat=%3Cjstor_proqu%3E24739725%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1734291267&rft_id=info:pmid/&rft_jstor_id=24739725&rfr_iscdi=true |