Design and Analysis of the Randomized Response Technique

About a half century ago, in 1965, Warner proposed the randomized response method as a survey technique to reduce potential bias due to nonresponse and social desirability when asking questions about sensitive behaviors and beliefs. This method asks respondents to use a randomization device, such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2015-09, Vol.110 (511), p.1304-1319
Hauptverfasser: Blair, Graeme, Imai, Kosuke, Zhou, Yang-Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1319
container_issue 511
container_start_page 1304
container_title Journal of the American Statistical Association
container_volume 110
creator Blair, Graeme
Imai, Kosuke
Zhou, Yang-Yang
description About a half century ago, in 1965, Warner proposed the randomized response method as a survey technique to reduce potential bias due to nonresponse and social desirability when asking questions about sensitive behaviors and beliefs. This method asks respondents to use a randomization device, such as a coin flip, whose outcome is unobserved by the interviewer. By introducing random noise, the method conceals individual responses and protects respondent privacy. While numerous methodological advances have been made, we find surprisingly few applications of this promising survey technique. In this article, we address this gap by (1) reviewing standard designs available to applied researchers, (2) developing various multivariate regression techniques for substantive analyses, (3) proposing power analyses to help improve research designs, (4) presenting new robust designs that are based on less stringent assumptions than those of the standard designs, and (5) making all described methods available through open-source software. We illustrate some of these methods with an original survey about militant groups in Nigeria.
doi_str_mv 10.1080/01621459.2015.1050028
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1734291267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24739725</jstor_id><sourcerecordid>24739725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-9c1cd31c1cc05631e250e867ae85079cfeece4d0585778953a972b743d05bd2c3</originalsourceid><addsrcrecordid>eNqFUV1LwzAULaLgnP6EYcEXXzrz0TTpm2N-wkCYG_gWsvR26-iSmXTI_PWmdIr4Yh6ScO459-SeRNEAoyFGAt0gnBGcsnxIEGYBYggRcRT1MKM8ITx9O_51P43OvF-jsLgQvUjcga-WJlamiEdG1Xtf-diWcbOCeBpAu6k-oYin4LfWeIhnoFemet_BeXRSqtrDxeHsR_OH-9n4KZm8PD6PR5NEpww1Sa6xLigOu0YsoxgIQyAyrkAwxHNdAmhIC8QE41zkjKqckwVPaYAWBdG0H113fbfOBlvfyE3lNdS1MmB3XmLORE4FS3mgXv2hru3OhaFaFk1JjknWsljH0s5676CUW1dtlNtLjGSbp_zOU7Z5ykOeQTfodGvfWPcjIsE4PJmF-m1Xr0xp3UZ9WFcXslH72rrSKaMrL-l_Fpddi1JZqZYuKOavgZGF3xIsD0N8AfwUjNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734291267</pqid></control><display><type>article</type><title>Design and Analysis of the Randomized Response Technique</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Taylor &amp; Francis Journals Complete</source><creator>Blair, Graeme ; Imai, Kosuke ; Zhou, Yang-Yang</creator><creatorcontrib>Blair, Graeme ; Imai, Kosuke ; Zhou, Yang-Yang</creatorcontrib><description>About a half century ago, in 1965, Warner proposed the randomized response method as a survey technique to reduce potential bias due to nonresponse and social desirability when asking questions about sensitive behaviors and beliefs. This method asks respondents to use a randomization device, such as a coin flip, whose outcome is unobserved by the interviewer. By introducing random noise, the method conceals individual responses and protects respondent privacy. While numerous methodological advances have been made, we find surprisingly few applications of this promising survey technique. In this article, we address this gap by (1) reviewing standard designs available to applied researchers, (2) developing various multivariate regression techniques for substantive analyses, (3) proposing power analyses to help improve research designs, (4) presenting new robust designs that are based on less stringent assumptions than those of the standard designs, and (5) making all described methods available through open-source software. We illustrate some of these methods with an original survey about militant groups in Nigeria.</description><identifier>ISSN: 1537-274X</identifier><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2015.1050028</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Bias ; computer software ; data analysis ; human behavior ; Nigeria ; Open source software ; Power analysis ; Privacy ; Randomization ; Regression analysis ; Review ; Sensitive questions ; Social desirability bias ; Software ; Statistics ; surveys</subject><ispartof>Journal of the American Statistical Association, 2015-09, Vol.110 (511), p.1304-1319</ispartof><rights>American Statistical Association 2015</rights><rights>2015 American Statistical Association</rights><rights>Copyright Taylor &amp; Francis Ltd. Sep 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-9c1cd31c1cc05631e250e867ae85079cfeece4d0585778953a972b743d05bd2c3</citedby><cites>FETCH-LOGICAL-c450t-9c1cd31c1cc05631e250e867ae85079cfeece4d0585778953a972b743d05bd2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24739725$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24739725$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254,59647,60436</link.rule.ids></links><search><creatorcontrib>Blair, Graeme</creatorcontrib><creatorcontrib>Imai, Kosuke</creatorcontrib><creatorcontrib>Zhou, Yang-Yang</creatorcontrib><title>Design and Analysis of the Randomized Response Technique</title><title>Journal of the American Statistical Association</title><description>About a half century ago, in 1965, Warner proposed the randomized response method as a survey technique to reduce potential bias due to nonresponse and social desirability when asking questions about sensitive behaviors and beliefs. This method asks respondents to use a randomization device, such as a coin flip, whose outcome is unobserved by the interviewer. By introducing random noise, the method conceals individual responses and protects respondent privacy. While numerous methodological advances have been made, we find surprisingly few applications of this promising survey technique. In this article, we address this gap by (1) reviewing standard designs available to applied researchers, (2) developing various multivariate regression techniques for substantive analyses, (3) proposing power analyses to help improve research designs, (4) presenting new robust designs that are based on less stringent assumptions than those of the standard designs, and (5) making all described methods available through open-source software. We illustrate some of these methods with an original survey about militant groups in Nigeria.</description><subject>Bias</subject><subject>computer software</subject><subject>data analysis</subject><subject>human behavior</subject><subject>Nigeria</subject><subject>Open source software</subject><subject>Power analysis</subject><subject>Privacy</subject><subject>Randomization</subject><subject>Regression analysis</subject><subject>Review</subject><subject>Sensitive questions</subject><subject>Social desirability bias</subject><subject>Software</subject><subject>Statistics</subject><subject>surveys</subject><issn>1537-274X</issn><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUV1LwzAULaLgnP6EYcEXXzrz0TTpm2N-wkCYG_gWsvR26-iSmXTI_PWmdIr4Yh6ScO459-SeRNEAoyFGAt0gnBGcsnxIEGYBYggRcRT1MKM8ITx9O_51P43OvF-jsLgQvUjcga-WJlamiEdG1Xtf-diWcbOCeBpAu6k-oYin4LfWeIhnoFemet_BeXRSqtrDxeHsR_OH-9n4KZm8PD6PR5NEpww1Sa6xLigOu0YsoxgIQyAyrkAwxHNdAmhIC8QE41zkjKqckwVPaYAWBdG0H113fbfOBlvfyE3lNdS1MmB3XmLORE4FS3mgXv2hru3OhaFaFk1JjknWsljH0s5676CUW1dtlNtLjGSbp_zOU7Z5ykOeQTfodGvfWPcjIsE4PJmF-m1Xr0xp3UZ9WFcXslH72rrSKaMrL-l_Fpddi1JZqZYuKOavgZGF3xIsD0N8AfwUjNE</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Blair, Graeme</creator><creator>Imai, Kosuke</creator><creator>Zhou, Yang-Yang</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group, LLC</general><general>Taylor &amp; Francis Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20150901</creationdate><title>Design and Analysis of the Randomized Response Technique</title><author>Blair, Graeme ; Imai, Kosuke ; Zhou, Yang-Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-9c1cd31c1cc05631e250e867ae85079cfeece4d0585778953a972b743d05bd2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bias</topic><topic>computer software</topic><topic>data analysis</topic><topic>human behavior</topic><topic>Nigeria</topic><topic>Open source software</topic><topic>Power analysis</topic><topic>Privacy</topic><topic>Randomization</topic><topic>Regression analysis</topic><topic>Review</topic><topic>Sensitive questions</topic><topic>Social desirability bias</topic><topic>Software</topic><topic>Statistics</topic><topic>surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blair, Graeme</creatorcontrib><creatorcontrib>Imai, Kosuke</creatorcontrib><creatorcontrib>Zhou, Yang-Yang</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blair, Graeme</au><au>Imai, Kosuke</au><au>Zhou, Yang-Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Analysis of the Randomized Response Technique</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>110</volume><issue>511</issue><spage>1304</spage><epage>1319</epage><pages>1304-1319</pages><issn>1537-274X</issn><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>About a half century ago, in 1965, Warner proposed the randomized response method as a survey technique to reduce potential bias due to nonresponse and social desirability when asking questions about sensitive behaviors and beliefs. This method asks respondents to use a randomization device, such as a coin flip, whose outcome is unobserved by the interviewer. By introducing random noise, the method conceals individual responses and protects respondent privacy. While numerous methodological advances have been made, we find surprisingly few applications of this promising survey technique. In this article, we address this gap by (1) reviewing standard designs available to applied researchers, (2) developing various multivariate regression techniques for substantive analyses, (3) proposing power analyses to help improve research designs, (4) presenting new robust designs that are based on less stringent assumptions than those of the standard designs, and (5) making all described methods available through open-source software. We illustrate some of these methods with an original survey about militant groups in Nigeria.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01621459.2015.1050028</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1537-274X
ispartof Journal of the American Statistical Association, 2015-09, Vol.110 (511), p.1304-1319
issn 1537-274X
0162-1459
1537-274X
language eng
recordid cdi_proquest_journals_1734291267
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Taylor & Francis Journals Complete
subjects Bias
computer software
data analysis
human behavior
Nigeria
Open source software
Power analysis
Privacy
Randomization
Regression analysis
Review
Sensitive questions
Social desirability bias
Software
Statistics
surveys
title Design and Analysis of the Randomized Response Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Analysis%20of%20the%20Randomized%20Response%20Technique&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Blair,%20Graeme&rft.date=2015-09-01&rft.volume=110&rft.issue=511&rft.spage=1304&rft.epage=1319&rft.pages=1304-1319&rft.issn=1537-274X&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.2015.1050028&rft_dat=%3Cjstor_proqu%3E24739725%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1734291267&rft_id=info:pmid/&rft_jstor_id=24739725&rfr_iscdi=true