A Novel Porous Tube Reactor for Nanoparticle Synthesis with Simultaneous Gas-Phase Reaction and Dilution

A novel porous tube reactor that combines simultaneous reactions and continuous dilution in a single-stage gas-phase process was designed for nanoparticle synthesis. The design is based on the atmospheric pressure chemical vapor synthesis (APCVS) method. In comparison to the conventional hot wall ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aerosol science and technology 2015-11, Vol.49 (11), p.1170-1180
Hauptverfasser: Ruusunen, Jarno, Pyykönen, Jouni, Ihalainen, Mika, Tiitta, Petri, Torvela, Tiina, Karhunen, Tommi, Sippula, Olli, Qin, Qi Hang, van Dijken, Sebastiaan, Joutsensaari, Jorma, Lähde, Anna, Jokiniemi, Jorma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1180
container_issue 11
container_start_page 1170
container_title Aerosol science and technology
container_volume 49
creator Ruusunen, Jarno
Pyykönen, Jouni
Ihalainen, Mika
Tiitta, Petri
Torvela, Tiina
Karhunen, Tommi
Sippula, Olli
Qin, Qi Hang
van Dijken, Sebastiaan
Joutsensaari, Jorma
Lähde, Anna
Jokiniemi, Jorma
description A novel porous tube reactor that combines simultaneous reactions and continuous dilution in a single-stage gas-phase process was designed for nanoparticle synthesis. The design is based on the atmospheric pressure chemical vapor synthesis (APCVS) method. In comparison to the conventional hot wall chemical vapor synthesis reactor, the APCVS method offers an effective process for the synthesis of ultrafine metal particles with controlled oxidation. In this study, magnetic iron and maghemite were synthesized using iron pentacarbonyl as a precursor. Morphology, size, and magnetic properties of the synthesized nanoparticles were determined. The X-ray diffraction results show that the porous tube reactor produced nearly pure iron or maghemite nanoparticles with crystallite sizes of 24 and 29 nm, respectively. According to the scanning mobility particle sizer data, the geometric number mean diameter was 110 nm for iron and 150 nm for the maghemite agglomerates. The saturation magnetization value of iron was 150 emu/g and that of maghemite was 12 emu/g, measured with superconducting quantum interference device (SQUID) magnetometry. A computational fluid dynamics (CFD) simulation was used to model the temperature and flow fields and the decomposition of the precursor as well as the mixing of the precursor vapor and the reaction gas in the reactor. An in-house CFD model was used to predict the extent of nucleation, coagulation, sintering, and agglomeration of the iron nanoparticles. CFD simulations predicted a primary particle size of 36 nm and an agglomerate size of 134 nm for the iron nanoparticles, which agreed well with the experimental data. Copyright 2015 American Association for Aerosol Research
doi_str_mv 10.1080/02786826.2015.1107675
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1734286844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793247228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-3d7cd77361ec12bf8a521f1e84e4aeefe667e3992a33632a4e0ee19ff58fe3a23</originalsourceid><addsrcrecordid>eNqNkU1LJDEQhoO44OjuTxACXrz0mI_uTvqm-LWCuMOOnkPZU2Eimc6YdDvMv980M148yB6KouB5i3rrJeSUsylnml0woXStRT0VjFdTzpmqVXVAJrwSvFBS60MyGZlihI7IcUpvjDGuBJ-Q5RV9Ch_o6SzEMCT6PLwi_YvQ9iFSm-sJurCG2LvWI51vu36JySW6cf2Szt1q8D10OCrvIRWzJaS93IWOQregN84P4_CT_LDgE_7a9xPycnf7fP27ePxz_3B99Vi0pdZ9IReqXSgla44tF69WQzZhOeoSS0C0WNcKZdMIkLKWAkpkiLyxttIWJQh5Qs53e9cxvA-YerNyqUXvd2carhopSiWE_g-01pViolEZPfuCvoUhdtlIpmQp8v_LMlPVjmpjSCmiNevoVhC3hjMzRmU-ozJjVGYfVdZd7nSuyy9fwSZEvzA9bH2INkLXumTk9yv-AVmymo4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734286844</pqid></control><display><type>article</type><title>A Novel Porous Tube Reactor for Nanoparticle Synthesis with Simultaneous Gas-Phase Reaction and Dilution</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Ruusunen, Jarno ; Pyykönen, Jouni ; Ihalainen, Mika ; Tiitta, Petri ; Torvela, Tiina ; Karhunen, Tommi ; Sippula, Olli ; Qin, Qi Hang ; van Dijken, Sebastiaan ; Joutsensaari, Jorma ; Lähde, Anna ; Jokiniemi, Jorma</creator><creatorcontrib>Ruusunen, Jarno ; Pyykönen, Jouni ; Ihalainen, Mika ; Tiitta, Petri ; Torvela, Tiina ; Karhunen, Tommi ; Sippula, Olli ; Qin, Qi Hang ; van Dijken, Sebastiaan ; Joutsensaari, Jorma ; Lähde, Anna ; Jokiniemi, Jorma</creatorcontrib><description>A novel porous tube reactor that combines simultaneous reactions and continuous dilution in a single-stage gas-phase process was designed for nanoparticle synthesis. The design is based on the atmospheric pressure chemical vapor synthesis (APCVS) method. In comparison to the conventional hot wall chemical vapor synthesis reactor, the APCVS method offers an effective process for the synthesis of ultrafine metal particles with controlled oxidation. In this study, magnetic iron and maghemite were synthesized using iron pentacarbonyl as a precursor. Morphology, size, and magnetic properties of the synthesized nanoparticles were determined. The X-ray diffraction results show that the porous tube reactor produced nearly pure iron or maghemite nanoparticles with crystallite sizes of 24 and 29 nm, respectively. According to the scanning mobility particle sizer data, the geometric number mean diameter was 110 nm for iron and 150 nm for the maghemite agglomerates. The saturation magnetization value of iron was 150 emu/g and that of maghemite was 12 emu/g, measured with superconducting quantum interference device (SQUID) magnetometry. A computational fluid dynamics (CFD) simulation was used to model the temperature and flow fields and the decomposition of the precursor as well as the mixing of the precursor vapor and the reaction gas in the reactor. An in-house CFD model was used to predict the extent of nucleation, coagulation, sintering, and agglomeration of the iron nanoparticles. CFD simulations predicted a primary particle size of 36 nm and an agglomerate size of 134 nm for the iron nanoparticles, which agreed well with the experimental data. Copyright 2015 American Association for Aerosol Research</description><identifier>ISSN: 0278-6826</identifier><identifier>EISSN: 1521-7388</identifier><identifier>DOI: 10.1080/02786826.2015.1107675</identifier><language>eng</language><publisher>New York: Taylor &amp; Francis</publisher><subject>Atmospheric pressure ; Chemical synthesis ; Computational fluid dynamics ; Diffraction ; Fluid dynamics ; Iron ; Mathematical models ; Nanoparticles ; Precursors ; Reactors ; Synthesis (chemistry) ; Tubes</subject><ispartof>Aerosol science and technology, 2015-11, Vol.49 (11), p.1170-1180</ispartof><rights>Copyright © American Association for Aerosol Research 2015</rights><rights>Copyright Taylor &amp; Francis Ltd. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-3d7cd77361ec12bf8a521f1e84e4aeefe667e3992a33632a4e0ee19ff58fe3a23</citedby><cites>FETCH-LOGICAL-c488t-3d7cd77361ec12bf8a521f1e84e4aeefe667e3992a33632a4e0ee19ff58fe3a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ruusunen, Jarno</creatorcontrib><creatorcontrib>Pyykönen, Jouni</creatorcontrib><creatorcontrib>Ihalainen, Mika</creatorcontrib><creatorcontrib>Tiitta, Petri</creatorcontrib><creatorcontrib>Torvela, Tiina</creatorcontrib><creatorcontrib>Karhunen, Tommi</creatorcontrib><creatorcontrib>Sippula, Olli</creatorcontrib><creatorcontrib>Qin, Qi Hang</creatorcontrib><creatorcontrib>van Dijken, Sebastiaan</creatorcontrib><creatorcontrib>Joutsensaari, Jorma</creatorcontrib><creatorcontrib>Lähde, Anna</creatorcontrib><creatorcontrib>Jokiniemi, Jorma</creatorcontrib><title>A Novel Porous Tube Reactor for Nanoparticle Synthesis with Simultaneous Gas-Phase Reaction and Dilution</title><title>Aerosol science and technology</title><description>A novel porous tube reactor that combines simultaneous reactions and continuous dilution in a single-stage gas-phase process was designed for nanoparticle synthesis. The design is based on the atmospheric pressure chemical vapor synthesis (APCVS) method. In comparison to the conventional hot wall chemical vapor synthesis reactor, the APCVS method offers an effective process for the synthesis of ultrafine metal particles with controlled oxidation. In this study, magnetic iron and maghemite were synthesized using iron pentacarbonyl as a precursor. Morphology, size, and magnetic properties of the synthesized nanoparticles were determined. The X-ray diffraction results show that the porous tube reactor produced nearly pure iron or maghemite nanoparticles with crystallite sizes of 24 and 29 nm, respectively. According to the scanning mobility particle sizer data, the geometric number mean diameter was 110 nm for iron and 150 nm for the maghemite agglomerates. The saturation magnetization value of iron was 150 emu/g and that of maghemite was 12 emu/g, measured with superconducting quantum interference device (SQUID) magnetometry. A computational fluid dynamics (CFD) simulation was used to model the temperature and flow fields and the decomposition of the precursor as well as the mixing of the precursor vapor and the reaction gas in the reactor. An in-house CFD model was used to predict the extent of nucleation, coagulation, sintering, and agglomeration of the iron nanoparticles. CFD simulations predicted a primary particle size of 36 nm and an agglomerate size of 134 nm for the iron nanoparticles, which agreed well with the experimental data. Copyright 2015 American Association for Aerosol Research</description><subject>Atmospheric pressure</subject><subject>Chemical synthesis</subject><subject>Computational fluid dynamics</subject><subject>Diffraction</subject><subject>Fluid dynamics</subject><subject>Iron</subject><subject>Mathematical models</subject><subject>Nanoparticles</subject><subject>Precursors</subject><subject>Reactors</subject><subject>Synthesis (chemistry)</subject><subject>Tubes</subject><issn>0278-6826</issn><issn>1521-7388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LJDEQhoO44OjuTxACXrz0mI_uTvqm-LWCuMOOnkPZU2Eimc6YdDvMv980M148yB6KouB5i3rrJeSUsylnml0woXStRT0VjFdTzpmqVXVAJrwSvFBS60MyGZlihI7IcUpvjDGuBJ-Q5RV9Ch_o6SzEMCT6PLwi_YvQ9iFSm-sJurCG2LvWI51vu36JySW6cf2Szt1q8D10OCrvIRWzJaS93IWOQregN84P4_CT_LDgE_7a9xPycnf7fP27ePxz_3B99Vi0pdZ9IReqXSgla44tF69WQzZhOeoSS0C0WNcKZdMIkLKWAkpkiLyxttIWJQh5Qs53e9cxvA-YerNyqUXvd2carhopSiWE_g-01pViolEZPfuCvoUhdtlIpmQp8v_LMlPVjmpjSCmiNevoVhC3hjMzRmU-ozJjVGYfVdZd7nSuyy9fwSZEvzA9bH2INkLXumTk9yv-AVmymo4</recordid><startdate>20151102</startdate><enddate>20151102</enddate><creator>Ruusunen, Jarno</creator><creator>Pyykönen, Jouni</creator><creator>Ihalainen, Mika</creator><creator>Tiitta, Petri</creator><creator>Torvela, Tiina</creator><creator>Karhunen, Tommi</creator><creator>Sippula, Olli</creator><creator>Qin, Qi Hang</creator><creator>van Dijken, Sebastiaan</creator><creator>Joutsensaari, Jorma</creator><creator>Lähde, Anna</creator><creator>Jokiniemi, Jorma</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>KL.</scope></search><sort><creationdate>20151102</creationdate><title>A Novel Porous Tube Reactor for Nanoparticle Synthesis with Simultaneous Gas-Phase Reaction and Dilution</title><author>Ruusunen, Jarno ; Pyykönen, Jouni ; Ihalainen, Mika ; Tiitta, Petri ; Torvela, Tiina ; Karhunen, Tommi ; Sippula, Olli ; Qin, Qi Hang ; van Dijken, Sebastiaan ; Joutsensaari, Jorma ; Lähde, Anna ; Jokiniemi, Jorma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-3d7cd77361ec12bf8a521f1e84e4aeefe667e3992a33632a4e0ee19ff58fe3a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atmospheric pressure</topic><topic>Chemical synthesis</topic><topic>Computational fluid dynamics</topic><topic>Diffraction</topic><topic>Fluid dynamics</topic><topic>Iron</topic><topic>Mathematical models</topic><topic>Nanoparticles</topic><topic>Precursors</topic><topic>Reactors</topic><topic>Synthesis (chemistry)</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruusunen, Jarno</creatorcontrib><creatorcontrib>Pyykönen, Jouni</creatorcontrib><creatorcontrib>Ihalainen, Mika</creatorcontrib><creatorcontrib>Tiitta, Petri</creatorcontrib><creatorcontrib>Torvela, Tiina</creatorcontrib><creatorcontrib>Karhunen, Tommi</creatorcontrib><creatorcontrib>Sippula, Olli</creatorcontrib><creatorcontrib>Qin, Qi Hang</creatorcontrib><creatorcontrib>van Dijken, Sebastiaan</creatorcontrib><creatorcontrib>Joutsensaari, Jorma</creatorcontrib><creatorcontrib>Lähde, Anna</creatorcontrib><creatorcontrib>Jokiniemi, Jorma</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Aerosol science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruusunen, Jarno</au><au>Pyykönen, Jouni</au><au>Ihalainen, Mika</au><au>Tiitta, Petri</au><au>Torvela, Tiina</au><au>Karhunen, Tommi</au><au>Sippula, Olli</au><au>Qin, Qi Hang</au><au>van Dijken, Sebastiaan</au><au>Joutsensaari, Jorma</au><au>Lähde, Anna</au><au>Jokiniemi, Jorma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Porous Tube Reactor for Nanoparticle Synthesis with Simultaneous Gas-Phase Reaction and Dilution</atitle><jtitle>Aerosol science and technology</jtitle><date>2015-11-02</date><risdate>2015</risdate><volume>49</volume><issue>11</issue><spage>1170</spage><epage>1180</epage><pages>1170-1180</pages><issn>0278-6826</issn><eissn>1521-7388</eissn><abstract>A novel porous tube reactor that combines simultaneous reactions and continuous dilution in a single-stage gas-phase process was designed for nanoparticle synthesis. The design is based on the atmospheric pressure chemical vapor synthesis (APCVS) method. In comparison to the conventional hot wall chemical vapor synthesis reactor, the APCVS method offers an effective process for the synthesis of ultrafine metal particles with controlled oxidation. In this study, magnetic iron and maghemite were synthesized using iron pentacarbonyl as a precursor. Morphology, size, and magnetic properties of the synthesized nanoparticles were determined. The X-ray diffraction results show that the porous tube reactor produced nearly pure iron or maghemite nanoparticles with crystallite sizes of 24 and 29 nm, respectively. According to the scanning mobility particle sizer data, the geometric number mean diameter was 110 nm for iron and 150 nm for the maghemite agglomerates. The saturation magnetization value of iron was 150 emu/g and that of maghemite was 12 emu/g, measured with superconducting quantum interference device (SQUID) magnetometry. A computational fluid dynamics (CFD) simulation was used to model the temperature and flow fields and the decomposition of the precursor as well as the mixing of the precursor vapor and the reaction gas in the reactor. An in-house CFD model was used to predict the extent of nucleation, coagulation, sintering, and agglomeration of the iron nanoparticles. CFD simulations predicted a primary particle size of 36 nm and an agglomerate size of 134 nm for the iron nanoparticles, which agreed well with the experimental data. Copyright 2015 American Association for Aerosol Research</abstract><cop>New York</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02786826.2015.1107675</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-6826
ispartof Aerosol science and technology, 2015-11, Vol.49 (11), p.1170-1180
issn 0278-6826
1521-7388
language eng
recordid cdi_proquest_journals_1734286844
source EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Atmospheric pressure
Chemical synthesis
Computational fluid dynamics
Diffraction
Fluid dynamics
Iron
Mathematical models
Nanoparticles
Precursors
Reactors
Synthesis (chemistry)
Tubes
title A Novel Porous Tube Reactor for Nanoparticle Synthesis with Simultaneous Gas-Phase Reaction and Dilution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Porous%20Tube%20Reactor%20for%20Nanoparticle%20Synthesis%20with%20Simultaneous%20Gas-Phase%20Reaction%20and%20Dilution&rft.jtitle=Aerosol%20science%20and%20technology&rft.au=Ruusunen,%20Jarno&rft.date=2015-11-02&rft.volume=49&rft.issue=11&rft.spage=1170&rft.epage=1180&rft.pages=1170-1180&rft.issn=0278-6826&rft.eissn=1521-7388&rft_id=info:doi/10.1080/02786826.2015.1107675&rft_dat=%3Cproquest_infor%3E1793247228%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1734286844&rft_id=info:pmid/&rfr_iscdi=true