Unsupervised Hyperspectral Band Selection by Dominant Set Extraction

Unsupervised hyperspectral band selection has been an important topic in hyperspectral imagery. This technique aims at selecting some critical and decisive spectral bands from an original image for compact representation without compromising and distorting the raw information in the relevant spectra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2016-01, Vol.54 (1), p.227-239
Hauptverfasser: Zhu, Guokang, Huang, Yuancheng, Lei, Jingsheng, Bi, Zhongqin, Xu, Feifei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 1
container_start_page 227
container_title IEEE transactions on geoscience and remote sensing
container_volume 54
creator Zhu, Guokang
Huang, Yuancheng
Lei, Jingsheng
Bi, Zhongqin
Xu, Feifei
description Unsupervised hyperspectral band selection has been an important topic in hyperspectral imagery. This technique aims at selecting some critical and decisive spectral bands from an original image for compact representation without compromising and distorting the raw information in the relevant spectral bands. Although many efforts have been made to this topic, the structural information has not yet been well exploited during band selection, and there are still several deficiencies in search strategies, leaving room for further improvement. This paper tackles the unsupervised hyperspectral band selection problem from a global perspective and proposes a novel method claiming the following main contributions: structure-aware measures for band informativeness and independence; and a graph formulation of band selection allowing for an efficient integrated search by means of dominant set extraction. Experiments on three real hyperspectral images demonstrate the superiority of the proposed band selector in comparison with benchmark methods.
doi_str_mv 10.1109/TGRS.2015.2453362
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1733173908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7166333</ieee_id><sourcerecordid>1778028478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-a4d7ba8e5d5b89eaae193b6c73d4f4123bfcce57deca54d0575533c02a294c313</originalsourceid><addsrcrecordid>eNpdkM9LwzAUgIMoOKd_gHgpePHSmZ9Nc9RtbsJAcNs5pOkrdHRtTVrZ_ntTNzwYeCQv-V5470PonuAJIVg9bxaf6wnFREwoF4wl9AKNiBBpjBPOL9EIE5XENFX0Gt14v8OYcEHkCM22te9bcN-lhzxaHsPRt2A7Z6ro1dR5tIYqpGVTR9kxmjX7sjZ1F267aH4I1O_TLboqTOXh7ryP0fZtvpku49XH4n36sootU0kXG57LzKQgcpGlCowBoliWWMlyXnBCWVZYC0LmYI3gORZShFEspoYqbhlhY_R0-rd1zVcPvtP70luoKlND03tNpEwxTblMA_r4D901vatDd4FiLITCA0VOlHWN9w4K3bpyb9xRE6wHr3rwqgev-uw11DycakoA-OMlSRIW1g80XHPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733173908</pqid></control><display><type>article</type><title>Unsupervised Hyperspectral Band Selection by Dominant Set Extraction</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Guokang ; Huang, Yuancheng ; Lei, Jingsheng ; Bi, Zhongqin ; Xu, Feifei</creator><creatorcontrib>Zhu, Guokang ; Huang, Yuancheng ; Lei, Jingsheng ; Bi, Zhongqin ; Xu, Feifei</creatorcontrib><description>Unsupervised hyperspectral band selection has been an important topic in hyperspectral imagery. This technique aims at selecting some critical and decisive spectral bands from an original image for compact representation without compromising and distorting the raw information in the relevant spectral bands. Although many efforts have been made to this topic, the structural information has not yet been well exploited during band selection, and there are still several deficiencies in search strategies, leaving room for further improvement. This paper tackles the unsupervised hyperspectral band selection problem from a global perspective and proposes a novel method claiming the following main contributions: structure-aware measures for band informativeness and independence; and a graph formulation of band selection allowing for an efficient integrated search by means of dominant set extraction. Experiments on three real hyperspectral images demonstrate the superiority of the proposed band selector in comparison with benchmark methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2015.2453362</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Band selection ; Banded structure ; Correlation ; Distortion ; dominant set ; Extraction ; Feature extraction ; hyperspectral imagery ; Hyperspectral imaging ; image representation ; Indexes ; Redundancy ; remote sensing ; Satellites ; Search problems ; Searching ; Selectors ; Spectral bands ; Strategy</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2016-01, Vol.54 (1), p.227-239</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-a4d7ba8e5d5b89eaae193b6c73d4f4123bfcce57deca54d0575533c02a294c313</citedby><cites>FETCH-LOGICAL-c396t-a4d7ba8e5d5b89eaae193b6c73d4f4123bfcce57deca54d0575533c02a294c313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7166333$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7166333$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Guokang</creatorcontrib><creatorcontrib>Huang, Yuancheng</creatorcontrib><creatorcontrib>Lei, Jingsheng</creatorcontrib><creatorcontrib>Bi, Zhongqin</creatorcontrib><creatorcontrib>Xu, Feifei</creatorcontrib><title>Unsupervised Hyperspectral Band Selection by Dominant Set Extraction</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Unsupervised hyperspectral band selection has been an important topic in hyperspectral imagery. This technique aims at selecting some critical and decisive spectral bands from an original image for compact representation without compromising and distorting the raw information in the relevant spectral bands. Although many efforts have been made to this topic, the structural information has not yet been well exploited during band selection, and there are still several deficiencies in search strategies, leaving room for further improvement. This paper tackles the unsupervised hyperspectral band selection problem from a global perspective and proposes a novel method claiming the following main contributions: structure-aware measures for band informativeness and independence; and a graph formulation of band selection allowing for an efficient integrated search by means of dominant set extraction. Experiments on three real hyperspectral images demonstrate the superiority of the proposed band selector in comparison with benchmark methods.</description><subject>Band selection</subject><subject>Banded structure</subject><subject>Correlation</subject><subject>Distortion</subject><subject>dominant set</subject><subject>Extraction</subject><subject>Feature extraction</subject><subject>hyperspectral imagery</subject><subject>Hyperspectral imaging</subject><subject>image representation</subject><subject>Indexes</subject><subject>Redundancy</subject><subject>remote sensing</subject><subject>Satellites</subject><subject>Search problems</subject><subject>Searching</subject><subject>Selectors</subject><subject>Spectral bands</subject><subject>Strategy</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAUgIMoOKd_gHgpePHSmZ9Nc9RtbsJAcNs5pOkrdHRtTVrZ_ntTNzwYeCQv-V5470PonuAJIVg9bxaf6wnFREwoF4wl9AKNiBBpjBPOL9EIE5XENFX0Gt14v8OYcEHkCM22te9bcN-lhzxaHsPRt2A7Z6ro1dR5tIYqpGVTR9kxmjX7sjZ1F267aH4I1O_TLboqTOXh7ryP0fZtvpku49XH4n36sootU0kXG57LzKQgcpGlCowBoliWWMlyXnBCWVZYC0LmYI3gORZShFEspoYqbhlhY_R0-rd1zVcPvtP70luoKlND03tNpEwxTblMA_r4D901vatDd4FiLITCA0VOlHWN9w4K3bpyb9xRE6wHr3rwqgev-uw11DycakoA-OMlSRIW1g80XHPo</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Zhu, Guokang</creator><creator>Huang, Yuancheng</creator><creator>Lei, Jingsheng</creator><creator>Bi, Zhongqin</creator><creator>Xu, Feifei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20160101</creationdate><title>Unsupervised Hyperspectral Band Selection by Dominant Set Extraction</title><author>Zhu, Guokang ; Huang, Yuancheng ; Lei, Jingsheng ; Bi, Zhongqin ; Xu, Feifei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-a4d7ba8e5d5b89eaae193b6c73d4f4123bfcce57deca54d0575533c02a294c313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Band selection</topic><topic>Banded structure</topic><topic>Correlation</topic><topic>Distortion</topic><topic>dominant set</topic><topic>Extraction</topic><topic>Feature extraction</topic><topic>hyperspectral imagery</topic><topic>Hyperspectral imaging</topic><topic>image representation</topic><topic>Indexes</topic><topic>Redundancy</topic><topic>remote sensing</topic><topic>Satellites</topic><topic>Search problems</topic><topic>Searching</topic><topic>Selectors</topic><topic>Spectral bands</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Guokang</creatorcontrib><creatorcontrib>Huang, Yuancheng</creatorcontrib><creatorcontrib>Lei, Jingsheng</creatorcontrib><creatorcontrib>Bi, Zhongqin</creatorcontrib><creatorcontrib>Xu, Feifei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Guokang</au><au>Huang, Yuancheng</au><au>Lei, Jingsheng</au><au>Bi, Zhongqin</au><au>Xu, Feifei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Hyperspectral Band Selection by Dominant Set Extraction</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>54</volume><issue>1</issue><spage>227</spage><epage>239</epage><pages>227-239</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Unsupervised hyperspectral band selection has been an important topic in hyperspectral imagery. This technique aims at selecting some critical and decisive spectral bands from an original image for compact representation without compromising and distorting the raw information in the relevant spectral bands. Although many efforts have been made to this topic, the structural information has not yet been well exploited during band selection, and there are still several deficiencies in search strategies, leaving room for further improvement. This paper tackles the unsupervised hyperspectral band selection problem from a global perspective and proposes a novel method claiming the following main contributions: structure-aware measures for band informativeness and independence; and a graph formulation of band selection allowing for an efficient integrated search by means of dominant set extraction. Experiments on three real hyperspectral images demonstrate the superiority of the proposed band selector in comparison with benchmark methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2015.2453362</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2016-01, Vol.54 (1), p.227-239
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_1733173908
source IEEE Electronic Library (IEL)
subjects Band selection
Banded structure
Correlation
Distortion
dominant set
Extraction
Feature extraction
hyperspectral imagery
Hyperspectral imaging
image representation
Indexes
Redundancy
remote sensing
Satellites
Search problems
Searching
Selectors
Spectral bands
Strategy
title Unsupervised Hyperspectral Band Selection by Dominant Set Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Hyperspectral%20Band%20Selection%20by%20Dominant%20Set%20Extraction&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhu,%20Guokang&rft.date=2016-01-01&rft.volume=54&rft.issue=1&rft.spage=227&rft.epage=239&rft.pages=227-239&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2015.2453362&rft_dat=%3Cproquest_RIE%3E1778028478%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1733173908&rft_id=info:pmid/&rft_ieee_id=7166333&rfr_iscdi=true