The second generation of the GFZ Reference Internal Magnetic Model: GRIMM-2
We present the second generation of the GFZ Reference Internal Magnetic Model (GRIMM-2), that was derived for the preparation of the GFZ candidate for the 11th generation of the IGRF. The model is built by fitting a vector data set made of CHAMP satellite and observatory data, spanning the period 20...
Gespeichert in:
Veröffentlicht in: | Earth, planets, and space planets, and space, 2010-01, Vol.62 (10), p.765-773 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 773 |
---|---|
container_issue | 10 |
container_start_page | 765 |
container_title | Earth, planets, and space |
container_volume | 62 |
creator | Lesur, V. Wardinski, I. Hamoudi, M. Rother, M. |
description | We present the second generation of the GFZ Reference Internal Magnetic Model (GRIMM-2), that was derived for the preparation of the GFZ candidate for the 11th generation of the IGRF. The model is built by fitting a vector data set made of CHAMP satellite and observatory data, spanning the period 2001.0 to 2009.5. The data selection technique and the model parametrization are similar to that used for the derivation of the GRIMM model (Lesur et al., 2008). The obtained model is robust over the time span of the data. However, the secular variation above spherical harmonic degree 13 becomes less controlled by the data and is constrained by the applied regularization before 2002 and after 2008.5. At best, only the spherical harmonic degrees 3 to 6 are robustly estimated for the secular acceleration. The problem associated with the first two spherical harmonic degrees of the secular acceleration model arise from the difficulty in separating the core field signal from the external fields and their internally induced counterparts. The regularization technique applied smoothes the magnetic field model in time. This affects all spherical harmonic degrees, but starts to be significant at spherical harmonic degree 5. |
doi_str_mv | 10.5047/eps.2010.07.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1732874698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3865264811</sourcerecordid><originalsourceid>FETCH-LOGICAL-a454t-2c95c9d620139998cb6b65bb64968fc0d644e348aae4ed9f18c6832f17fc8b253</originalsourceid><addsrcrecordid>eNp1kM1PAjEQxRujiYievTbxvNBuu_3wZoggkY0JwYuXptudIgS72C4H_3tK8ODF08xk3nt5-SF0T8moIlyOYZ9GJckXkSNC5AUaUKVIUWlFL_POOCuUYuU1uklpSwgjXLABel19Ak7gutDiNQSItt90AXce9_kxm37gJXiIEBzgeeghBrvDtV0H6DcO110Lu0c8W87ruihv0ZW3uwR3v3OI3qfPq8lLsXibzSdPi8LyivdF6XTldCtyWaa1Vq4RjaiaRnAtlHekFZwD48pa4NBqT5UTubin0jvVlBUboodz7j523wdIvdl2h1OxZKhkpZJcaJVV47PKxS6lCN7s4-bLxh9DiTkRM5mYOREzRJpMLDvI2ZGyMqwh_sn9x3IEgWJsWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732874698</pqid></control><display><type>article</type><title>The second generation of the GFZ Reference Internal Magnetic Model: GRIMM-2</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Lesur, V. ; Wardinski, I. ; Hamoudi, M. ; Rother, M.</creator><creatorcontrib>Lesur, V. ; Wardinski, I. ; Hamoudi, M. ; Rother, M.</creatorcontrib><description>We present the second generation of the GFZ Reference Internal Magnetic Model (GRIMM-2), that was derived for the preparation of the GFZ candidate for the 11th generation of the IGRF. The model is built by fitting a vector data set made of CHAMP satellite and observatory data, spanning the period 2001.0 to 2009.5. The data selection technique and the model parametrization are similar to that used for the derivation of the GRIMM model (Lesur et al., 2008). The obtained model is robust over the time span of the data. However, the secular variation above spherical harmonic degree 13 becomes less controlled by the data and is constrained by the applied regularization before 2002 and after 2008.5. At best, only the spherical harmonic degrees 3 to 6 are robustly estimated for the secular acceleration. The problem associated with the first two spherical harmonic degrees of the secular acceleration model arise from the difficulty in separating the core field signal from the external fields and their internally induced counterparts. The regularization technique applied smoothes the magnetic field model in time. This affects all spherical harmonic degrees, but starts to be significant at spherical harmonic degree 5.</description><identifier>ISSN: 1343-8832</identifier><identifier>EISSN: 1880-5981</identifier><identifier>DOI: 10.5047/eps.2010.07.007</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Earth and Environmental Science ; Earth Sciences ; Geology ; Geophysics/Geodesy</subject><ispartof>Earth, planets, and space, 2010-01, Vol.62 (10), p.765-773</ispartof><rights>The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB. 2010</rights><rights>The Society of Geomagnetism and Earth, Planetary and Space Sciences, The Seismological Society of Japan 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a454t-2c95c9d620139998cb6b65bb64968fc0d644e348aae4ed9f18c6832f17fc8b253</citedby><cites>FETCH-LOGICAL-a454t-2c95c9d620139998cb6b65bb64968fc0d644e348aae4ed9f18c6832f17fc8b253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.5047/eps.2010.07.007$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.5047/eps.2010.07.007$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41101,41469,42170,42538,51300,51557</link.rule.ids></links><search><creatorcontrib>Lesur, V.</creatorcontrib><creatorcontrib>Wardinski, I.</creatorcontrib><creatorcontrib>Hamoudi, M.</creatorcontrib><creatorcontrib>Rother, M.</creatorcontrib><title>The second generation of the GFZ Reference Internal Magnetic Model: GRIMM-2</title><title>Earth, planets, and space</title><addtitle>Earth Planet Sp</addtitle><description>We present the second generation of the GFZ Reference Internal Magnetic Model (GRIMM-2), that was derived for the preparation of the GFZ candidate for the 11th generation of the IGRF. The model is built by fitting a vector data set made of CHAMP satellite and observatory data, spanning the period 2001.0 to 2009.5. The data selection technique and the model parametrization are similar to that used for the derivation of the GRIMM model (Lesur et al., 2008). The obtained model is robust over the time span of the data. However, the secular variation above spherical harmonic degree 13 becomes less controlled by the data and is constrained by the applied regularization before 2002 and after 2008.5. At best, only the spherical harmonic degrees 3 to 6 are robustly estimated for the secular acceleration. The problem associated with the first two spherical harmonic degrees of the secular acceleration model arise from the difficulty in separating the core field signal from the external fields and their internally induced counterparts. The regularization technique applied smoothes the magnetic field model in time. This affects all spherical harmonic degrees, but starts to be significant at spherical harmonic degree 5.</description><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><issn>1343-8832</issn><issn>1880-5981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1PAjEQxRujiYievTbxvNBuu_3wZoggkY0JwYuXptudIgS72C4H_3tK8ODF08xk3nt5-SF0T8moIlyOYZ9GJckXkSNC5AUaUKVIUWlFL_POOCuUYuU1uklpSwgjXLABel19Ak7gutDiNQSItt90AXce9_kxm37gJXiIEBzgeeghBrvDtV0H6DcO110Lu0c8W87ruihv0ZW3uwR3v3OI3qfPq8lLsXibzSdPi8LyivdF6XTldCtyWaa1Vq4RjaiaRnAtlHekFZwD48pa4NBqT5UTubin0jvVlBUboodz7j523wdIvdl2h1OxZKhkpZJcaJVV47PKxS6lCN7s4-bLxh9DiTkRM5mYOREzRJpMLDvI2ZGyMqwh_sn9x3IEgWJsWw</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Lesur, V.</creator><creator>Wardinski, I.</creator><creator>Hamoudi, M.</creator><creator>Rother, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20100101</creationdate><title>The second generation of the GFZ Reference Internal Magnetic Model: GRIMM-2</title><author>Lesur, V. ; Wardinski, I. ; Hamoudi, M. ; Rother, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a454t-2c95c9d620139998cb6b65bb64968fc0d644e348aae4ed9f18c6832f17fc8b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lesur, V.</creatorcontrib><creatorcontrib>Wardinski, I.</creatorcontrib><creatorcontrib>Hamoudi, M.</creatorcontrib><creatorcontrib>Rother, M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Earth, planets, and space</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lesur, V.</au><au>Wardinski, I.</au><au>Hamoudi, M.</au><au>Rother, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The second generation of the GFZ Reference Internal Magnetic Model: GRIMM-2</atitle><jtitle>Earth, planets, and space</jtitle><stitle>Earth Planet Sp</stitle><date>2010-01-01</date><risdate>2010</risdate><volume>62</volume><issue>10</issue><spage>765</spage><epage>773</epage><pages>765-773</pages><issn>1343-8832</issn><eissn>1880-5981</eissn><abstract>We present the second generation of the GFZ Reference Internal Magnetic Model (GRIMM-2), that was derived for the preparation of the GFZ candidate for the 11th generation of the IGRF. The model is built by fitting a vector data set made of CHAMP satellite and observatory data, spanning the period 2001.0 to 2009.5. The data selection technique and the model parametrization are similar to that used for the derivation of the GRIMM model (Lesur et al., 2008). The obtained model is robust over the time span of the data. However, the secular variation above spherical harmonic degree 13 becomes less controlled by the data and is constrained by the applied regularization before 2002 and after 2008.5. At best, only the spherical harmonic degrees 3 to 6 are robustly estimated for the secular acceleration. The problem associated with the first two spherical harmonic degrees of the secular acceleration model arise from the difficulty in separating the core field signal from the external fields and their internally induced counterparts. The regularization technique applied smoothes the magnetic field model in time. This affects all spherical harmonic degrees, but starts to be significant at spherical harmonic degree 5.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.5047/eps.2010.07.007</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1343-8832 |
ispartof | Earth, planets, and space, 2010-01, Vol.62 (10), p.765-773 |
issn | 1343-8832 1880-5981 |
language | eng |
recordid | cdi_proquest_journals_1732874698 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Earth and Environmental Science Earth Sciences Geology Geophysics/Geodesy |
title | The second generation of the GFZ Reference Internal Magnetic Model: GRIMM-2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20second%20generation%20of%20the%20GFZ%20Reference%20Internal%20Magnetic%20Model:%20GRIMM-2&rft.jtitle=Earth,%20planets,%20and%20space&rft.au=Lesur,%20V.&rft.date=2010-01-01&rft.volume=62&rft.issue=10&rft.spage=765&rft.epage=773&rft.pages=765-773&rft.issn=1343-8832&rft.eissn=1880-5981&rft_id=info:doi/10.5047/eps.2010.07.007&rft_dat=%3Cproquest_cross%3E3865264811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732874698&rft_id=info:pmid/&rfr_iscdi=true |