Description and Characterization of a Novel Method for Partial Volume Simulation in Software Breast Phantoms
A modification to our previous simulation of breast anatomy is proposed to improve the quality of simulated x-ray projections images. The image quality is affected by the voxel size of the simulation. Large voxels can cause notable spatial quantization artifacts; small voxels extend the generation t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2015-10, Vol.34 (10), p.2146-2161 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2161 |
---|---|
container_issue | 10 |
container_start_page | 2146 |
container_title | IEEE transactions on medical imaging |
container_volume | 34 |
creator | Feiyu Chen Bakic, Predrag R. Maidment, Andrew D. A. Jensen, Shane T. Xiquan Shi Pokrajac, David D. |
description | A modification to our previous simulation of breast anatomy is proposed to improve the quality of simulated x-ray projections images. The image quality is affected by the voxel size of the simulation. Large voxels can cause notable spatial quantization artifacts; small voxels extend the generation time and increase the memory requirements. An improvement in image quality is achievable without reducing voxel size by the simulation of partial volume averaging in which voxels containing more than one simulated tissue type are allowed. The linear x-ray attenuation coefficient of voxels is, thus, the sum of the linear attenuation coefficients weighted by the voxel subvolume occupied by each tissue type. A local planar approximation of the boundary surface is employed. In the two-material case, the partial volume in each voxel is computed by decomposition into up to four simple geometric shapes. In the three-material case, by application of the Gauss-Ostrogradsky theorem, the 3D partial volume problem is converted into one of a few simpler 2D surface area problems. We illustrate the benefits of the proposed methodology on simulated x-ray projections. An efficient encoding scheme is proposed for the type and proportion of simulated tissues in each voxel. Monte Carlo simulation was used to evaluate the quantitative error of our approximation algorithms. |
doi_str_mv | 10.1109/TMI.2015.2424854 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1729177323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7089303</ieee_id><sourcerecordid>3855271241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-6ab5b18c74d71c6164d3a683c09b1ede508d5052e828ab8be5c775c0f937a9b3</originalsourceid><addsrcrecordid>eNpdkU2LFDEQhoMo7rh6FwQJePHSY-Wrkxx1_FrY1YUdxFuTTlczWbo7s0la0V9vjzPuwVNB1fMWRT2EPGewZgzsm-3VxZoDU2suuTRKPiArppSpuJLfH5IVcG0qgJqfkSc53wIwqcA-JmdcWQag6hUZ3mP2KexLiBN1U0c3O5ecL5jCb_e3GXvq6Jf4Awd6hWUXO9rHRK9dKsEN9Fsc5hHpTRjn4ciHid7Evvx0Cem7hC4Xer1zU4ljfkoe9W7I-OxUz8n244ft5nN1-fXTxebtZeWFsaWqXataZryWnWa-ZrXshKuN8GBbhh0qMJ0CxdFw41rTovJaKw-9FdrZVpyT18e1-xTvZsylGUP2OAxuwjjnhmkOUmpRywV99R96G-c0LccdKMu0FlwsFBwpn2LOCftmn8Lo0q-GQXMQ0SwimoOI5iRiibw8LZ7bEbv7wL_PL8CLIxAQ8X6swVgBQvwBvq2MWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729177323</pqid></control><display><type>article</type><title>Description and Characterization of a Novel Method for Partial Volume Simulation in Software Breast Phantoms</title><source>IEEE Electronic Library (IEL)</source><creator>Feiyu Chen ; Bakic, Predrag R. ; Maidment, Andrew D. A. ; Jensen, Shane T. ; Xiquan Shi ; Pokrajac, David D.</creator><creatorcontrib>Feiyu Chen ; Bakic, Predrag R. ; Maidment, Andrew D. A. ; Jensen, Shane T. ; Xiquan Shi ; Pokrajac, David D.</creatorcontrib><description>A modification to our previous simulation of breast anatomy is proposed to improve the quality of simulated x-ray projections images. The image quality is affected by the voxel size of the simulation. Large voxels can cause notable spatial quantization artifacts; small voxels extend the generation time and increase the memory requirements. An improvement in image quality is achievable without reducing voxel size by the simulation of partial volume averaging in which voxels containing more than one simulated tissue type are allowed. The linear x-ray attenuation coefficient of voxels is, thus, the sum of the linear attenuation coefficients weighted by the voxel subvolume occupied by each tissue type. A local planar approximation of the boundary surface is employed. In the two-material case, the partial volume in each voxel is computed by decomposition into up to four simple geometric shapes. In the three-material case, by application of the Gauss-Ostrogradsky theorem, the 3D partial volume problem is converted into one of a few simpler 2D surface area problems. We illustrate the benefits of the proposed methodology on simulated x-ray projections. An efficient encoding scheme is proposed for the type and proportion of simulated tissues in each voxel. Monte Carlo simulation was used to evaluate the quantitative error of our approximation algorithms.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2015.2424854</identifier><identifier>PMID: 25910056</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anthropomorphic breast phantom ; Breast ; Computer Simulation ; digital mammography ; Female ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging phantoms ; Ligaments ; Linear approximation ; Mammography - methods ; Models, Biological ; Monte Carlo ; Monte Carlo simulation ; partial volume simulation ; Phantoms ; Phantoms, Imaging ; Quality ; Skin</subject><ispartof>IEEE transactions on medical imaging, 2015-10, Vol.34 (10), p.2146-2161</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-6ab5b18c74d71c6164d3a683c09b1ede508d5052e828ab8be5c775c0f937a9b3</citedby><cites>FETCH-LOGICAL-c389t-6ab5b18c74d71c6164d3a683c09b1ede508d5052e828ab8be5c775c0f937a9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7089303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7089303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25910056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feiyu Chen</creatorcontrib><creatorcontrib>Bakic, Predrag R.</creatorcontrib><creatorcontrib>Maidment, Andrew D. A.</creatorcontrib><creatorcontrib>Jensen, Shane T.</creatorcontrib><creatorcontrib>Xiquan Shi</creatorcontrib><creatorcontrib>Pokrajac, David D.</creatorcontrib><title>Description and Characterization of a Novel Method for Partial Volume Simulation in Software Breast Phantoms</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>A modification to our previous simulation of breast anatomy is proposed to improve the quality of simulated x-ray projections images. The image quality is affected by the voxel size of the simulation. Large voxels can cause notable spatial quantization artifacts; small voxels extend the generation time and increase the memory requirements. An improvement in image quality is achievable without reducing voxel size by the simulation of partial volume averaging in which voxels containing more than one simulated tissue type are allowed. The linear x-ray attenuation coefficient of voxels is, thus, the sum of the linear attenuation coefficients weighted by the voxel subvolume occupied by each tissue type. A local planar approximation of the boundary surface is employed. In the two-material case, the partial volume in each voxel is computed by decomposition into up to four simple geometric shapes. In the three-material case, by application of the Gauss-Ostrogradsky theorem, the 3D partial volume problem is converted into one of a few simpler 2D surface area problems. We illustrate the benefits of the proposed methodology on simulated x-ray projections. An efficient encoding scheme is proposed for the type and proportion of simulated tissues in each voxel. Monte Carlo simulation was used to evaluate the quantitative error of our approximation algorithms.</description><subject>Anthropomorphic breast phantom</subject><subject>Breast</subject><subject>Computer Simulation</subject><subject>digital mammography</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging phantoms</subject><subject>Ligaments</subject><subject>Linear approximation</subject><subject>Mammography - methods</subject><subject>Models, Biological</subject><subject>Monte Carlo</subject><subject>Monte Carlo simulation</subject><subject>partial volume simulation</subject><subject>Phantoms</subject><subject>Phantoms, Imaging</subject><subject>Quality</subject><subject>Skin</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU2LFDEQhoMo7rh6FwQJePHSY-Wrkxx1_FrY1YUdxFuTTlczWbo7s0la0V9vjzPuwVNB1fMWRT2EPGewZgzsm-3VxZoDU2suuTRKPiArppSpuJLfH5IVcG0qgJqfkSc53wIwqcA-JmdcWQag6hUZ3mP2KexLiBN1U0c3O5ecL5jCb_e3GXvq6Jf4Awd6hWUXO9rHRK9dKsEN9Fsc5hHpTRjn4ciHid7Evvx0Cem7hC4Xer1zU4ljfkoe9W7I-OxUz8n244ft5nN1-fXTxebtZeWFsaWqXataZryWnWa-ZrXshKuN8GBbhh0qMJ0CxdFw41rTovJaKw-9FdrZVpyT18e1-xTvZsylGUP2OAxuwjjnhmkOUmpRywV99R96G-c0LccdKMu0FlwsFBwpn2LOCftmn8Lo0q-GQXMQ0SwimoOI5iRiibw8LZ7bEbv7wL_PL8CLIxAQ8X6swVgBQvwBvq2MWg</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Feiyu Chen</creator><creator>Bakic, Predrag R.</creator><creator>Maidment, Andrew D. A.</creator><creator>Jensen, Shane T.</creator><creator>Xiquan Shi</creator><creator>Pokrajac, David D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201510</creationdate><title>Description and Characterization of a Novel Method for Partial Volume Simulation in Software Breast Phantoms</title><author>Feiyu Chen ; Bakic, Predrag R. ; Maidment, Andrew D. A. ; Jensen, Shane T. ; Xiquan Shi ; Pokrajac, David D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-6ab5b18c74d71c6164d3a683c09b1ede508d5052e828ab8be5c775c0f937a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anthropomorphic breast phantom</topic><topic>Breast</topic><topic>Computer Simulation</topic><topic>digital mammography</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging phantoms</topic><topic>Ligaments</topic><topic>Linear approximation</topic><topic>Mammography - methods</topic><topic>Models, Biological</topic><topic>Monte Carlo</topic><topic>Monte Carlo simulation</topic><topic>partial volume simulation</topic><topic>Phantoms</topic><topic>Phantoms, Imaging</topic><topic>Quality</topic><topic>Skin</topic><toplevel>online_resources</toplevel><creatorcontrib>Feiyu Chen</creatorcontrib><creatorcontrib>Bakic, Predrag R.</creatorcontrib><creatorcontrib>Maidment, Andrew D. A.</creatorcontrib><creatorcontrib>Jensen, Shane T.</creatorcontrib><creatorcontrib>Xiquan Shi</creatorcontrib><creatorcontrib>Pokrajac, David D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feiyu Chen</au><au>Bakic, Predrag R.</au><au>Maidment, Andrew D. A.</au><au>Jensen, Shane T.</au><au>Xiquan Shi</au><au>Pokrajac, David D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Description and Characterization of a Novel Method for Partial Volume Simulation in Software Breast Phantoms</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2015-10</date><risdate>2015</risdate><volume>34</volume><issue>10</issue><spage>2146</spage><epage>2161</epage><pages>2146-2161</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>A modification to our previous simulation of breast anatomy is proposed to improve the quality of simulated x-ray projections images. The image quality is affected by the voxel size of the simulation. Large voxels can cause notable spatial quantization artifacts; small voxels extend the generation time and increase the memory requirements. An improvement in image quality is achievable without reducing voxel size by the simulation of partial volume averaging in which voxels containing more than one simulated tissue type are allowed. The linear x-ray attenuation coefficient of voxels is, thus, the sum of the linear attenuation coefficients weighted by the voxel subvolume occupied by each tissue type. A local planar approximation of the boundary surface is employed. In the two-material case, the partial volume in each voxel is computed by decomposition into up to four simple geometric shapes. In the three-material case, by application of the Gauss-Ostrogradsky theorem, the 3D partial volume problem is converted into one of a few simpler 2D surface area problems. We illustrate the benefits of the proposed methodology on simulated x-ray projections. An efficient encoding scheme is proposed for the type and proportion of simulated tissues in each voxel. Monte Carlo simulation was used to evaluate the quantitative error of our approximation algorithms.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25910056</pmid><doi>10.1109/TMI.2015.2424854</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2015-10, Vol.34 (10), p.2146-2161 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_journals_1729177323 |
source | IEEE Electronic Library (IEL) |
subjects | Anthropomorphic breast phantom Breast Computer Simulation digital mammography Female Humans Image Processing, Computer-Assisted - methods Imaging phantoms Ligaments Linear approximation Mammography - methods Models, Biological Monte Carlo Monte Carlo simulation partial volume simulation Phantoms Phantoms, Imaging Quality Skin |
title | Description and Characterization of a Novel Method for Partial Volume Simulation in Software Breast Phantoms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Description%20and%20Characterization%20of%20a%20Novel%20Method%20for%20Partial%20Volume%20Simulation%20in%20Software%20Breast%20Phantoms&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Feiyu%20Chen&rft.date=2015-10&rft.volume=34&rft.issue=10&rft.spage=2146&rft.epage=2161&rft.pages=2146-2161&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2015.2424854&rft_dat=%3Cproquest_RIE%3E3855271241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729177323&rft_id=info:pmid/25910056&rft_ieee_id=7089303&rfr_iscdi=true |