Description and Characterization of a Novel Method for Partial Volume Simulation in Software Breast Phantoms

A modification to our previous simulation of breast anatomy is proposed to improve the quality of simulated x-ray projections images. The image quality is affected by the voxel size of the simulation. Large voxels can cause notable spatial quantization artifacts; small voxels extend the generation t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2015-10, Vol.34 (10), p.2146-2161
Hauptverfasser: Feiyu Chen, Bakic, Predrag R., Maidment, Andrew D. A., Jensen, Shane T., Xiquan Shi, Pokrajac, David D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2161
container_issue 10
container_start_page 2146
container_title IEEE transactions on medical imaging
container_volume 34
creator Feiyu Chen
Bakic, Predrag R.
Maidment, Andrew D. A.
Jensen, Shane T.
Xiquan Shi
Pokrajac, David D.
description A modification to our previous simulation of breast anatomy is proposed to improve the quality of simulated x-ray projections images. The image quality is affected by the voxel size of the simulation. Large voxels can cause notable spatial quantization artifacts; small voxels extend the generation time and increase the memory requirements. An improvement in image quality is achievable without reducing voxel size by the simulation of partial volume averaging in which voxels containing more than one simulated tissue type are allowed. The linear x-ray attenuation coefficient of voxels is, thus, the sum of the linear attenuation coefficients weighted by the voxel subvolume occupied by each tissue type. A local planar approximation of the boundary surface is employed. In the two-material case, the partial volume in each voxel is computed by decomposition into up to four simple geometric shapes. In the three-material case, by application of the Gauss-Ostrogradsky theorem, the 3D partial volume problem is converted into one of a few simpler 2D surface area problems. We illustrate the benefits of the proposed methodology on simulated x-ray projections. An efficient encoding scheme is proposed for the type and proportion of simulated tissues in each voxel. Monte Carlo simulation was used to evaluate the quantitative error of our approximation algorithms.
doi_str_mv 10.1109/TMI.2015.2424854
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1729177323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7089303</ieee_id><sourcerecordid>3855271241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-6ab5b18c74d71c6164d3a683c09b1ede508d5052e828ab8be5c775c0f937a9b3</originalsourceid><addsrcrecordid>eNpdkU2LFDEQhoMo7rh6FwQJePHSY-Wrkxx1_FrY1YUdxFuTTlczWbo7s0la0V9vjzPuwVNB1fMWRT2EPGewZgzsm-3VxZoDU2suuTRKPiArppSpuJLfH5IVcG0qgJqfkSc53wIwqcA-JmdcWQag6hUZ3mP2KexLiBN1U0c3O5ecL5jCb_e3GXvq6Jf4Awd6hWUXO9rHRK9dKsEN9Fsc5hHpTRjn4ciHid7Evvx0Cem7hC4Xer1zU4ljfkoe9W7I-OxUz8n244ft5nN1-fXTxebtZeWFsaWqXataZryWnWa-ZrXshKuN8GBbhh0qMJ0CxdFw41rTovJaKw-9FdrZVpyT18e1-xTvZsylGUP2OAxuwjjnhmkOUmpRywV99R96G-c0LccdKMu0FlwsFBwpn2LOCftmn8Lo0q-GQXMQ0SwimoOI5iRiibw8LZ7bEbv7wL_PL8CLIxAQ8X6swVgBQvwBvq2MWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729177323</pqid></control><display><type>article</type><title>Description and Characterization of a Novel Method for Partial Volume Simulation in Software Breast Phantoms</title><source>IEEE Electronic Library (IEL)</source><creator>Feiyu Chen ; Bakic, Predrag R. ; Maidment, Andrew D. A. ; Jensen, Shane T. ; Xiquan Shi ; Pokrajac, David D.</creator><creatorcontrib>Feiyu Chen ; Bakic, Predrag R. ; Maidment, Andrew D. A. ; Jensen, Shane T. ; Xiquan Shi ; Pokrajac, David D.</creatorcontrib><description>A modification to our previous simulation of breast anatomy is proposed to improve the quality of simulated x-ray projections images. The image quality is affected by the voxel size of the simulation. Large voxels can cause notable spatial quantization artifacts; small voxels extend the generation time and increase the memory requirements. An improvement in image quality is achievable without reducing voxel size by the simulation of partial volume averaging in which voxels containing more than one simulated tissue type are allowed. The linear x-ray attenuation coefficient of voxels is, thus, the sum of the linear attenuation coefficients weighted by the voxel subvolume occupied by each tissue type. A local planar approximation of the boundary surface is employed. In the two-material case, the partial volume in each voxel is computed by decomposition into up to four simple geometric shapes. In the three-material case, by application of the Gauss-Ostrogradsky theorem, the 3D partial volume problem is converted into one of a few simpler 2D surface area problems. We illustrate the benefits of the proposed methodology on simulated x-ray projections. An efficient encoding scheme is proposed for the type and proportion of simulated tissues in each voxel. Monte Carlo simulation was used to evaluate the quantitative error of our approximation algorithms.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2015.2424854</identifier><identifier>PMID: 25910056</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anthropomorphic breast phantom ; Breast ; Computer Simulation ; digital mammography ; Female ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging phantoms ; Ligaments ; Linear approximation ; Mammography - methods ; Models, Biological ; Monte Carlo ; Monte Carlo simulation ; partial volume simulation ; Phantoms ; Phantoms, Imaging ; Quality ; Skin</subject><ispartof>IEEE transactions on medical imaging, 2015-10, Vol.34 (10), p.2146-2161</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-6ab5b18c74d71c6164d3a683c09b1ede508d5052e828ab8be5c775c0f937a9b3</citedby><cites>FETCH-LOGICAL-c389t-6ab5b18c74d71c6164d3a683c09b1ede508d5052e828ab8be5c775c0f937a9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7089303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7089303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25910056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feiyu Chen</creatorcontrib><creatorcontrib>Bakic, Predrag R.</creatorcontrib><creatorcontrib>Maidment, Andrew D. A.</creatorcontrib><creatorcontrib>Jensen, Shane T.</creatorcontrib><creatorcontrib>Xiquan Shi</creatorcontrib><creatorcontrib>Pokrajac, David D.</creatorcontrib><title>Description and Characterization of a Novel Method for Partial Volume Simulation in Software Breast Phantoms</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>A modification to our previous simulation of breast anatomy is proposed to improve the quality of simulated x-ray projections images. The image quality is affected by the voxel size of the simulation. Large voxels can cause notable spatial quantization artifacts; small voxels extend the generation time and increase the memory requirements. An improvement in image quality is achievable without reducing voxel size by the simulation of partial volume averaging in which voxels containing more than one simulated tissue type are allowed. The linear x-ray attenuation coefficient of voxels is, thus, the sum of the linear attenuation coefficients weighted by the voxel subvolume occupied by each tissue type. A local planar approximation of the boundary surface is employed. In the two-material case, the partial volume in each voxel is computed by decomposition into up to four simple geometric shapes. In the three-material case, by application of the Gauss-Ostrogradsky theorem, the 3D partial volume problem is converted into one of a few simpler 2D surface area problems. We illustrate the benefits of the proposed methodology on simulated x-ray projections. An efficient encoding scheme is proposed for the type and proportion of simulated tissues in each voxel. Monte Carlo simulation was used to evaluate the quantitative error of our approximation algorithms.</description><subject>Anthropomorphic breast phantom</subject><subject>Breast</subject><subject>Computer Simulation</subject><subject>digital mammography</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging phantoms</subject><subject>Ligaments</subject><subject>Linear approximation</subject><subject>Mammography - methods</subject><subject>Models, Biological</subject><subject>Monte Carlo</subject><subject>Monte Carlo simulation</subject><subject>partial volume simulation</subject><subject>Phantoms</subject><subject>Phantoms, Imaging</subject><subject>Quality</subject><subject>Skin</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU2LFDEQhoMo7rh6FwQJePHSY-Wrkxx1_FrY1YUdxFuTTlczWbo7s0la0V9vjzPuwVNB1fMWRT2EPGewZgzsm-3VxZoDU2suuTRKPiArppSpuJLfH5IVcG0qgJqfkSc53wIwqcA-JmdcWQag6hUZ3mP2KexLiBN1U0c3O5ecL5jCb_e3GXvq6Jf4Awd6hWUXO9rHRK9dKsEN9Fsc5hHpTRjn4ciHid7Evvx0Cem7hC4Xer1zU4ljfkoe9W7I-OxUz8n244ft5nN1-fXTxebtZeWFsaWqXataZryWnWa-ZrXshKuN8GBbhh0qMJ0CxdFw41rTovJaKw-9FdrZVpyT18e1-xTvZsylGUP2OAxuwjjnhmkOUmpRywV99R96G-c0LccdKMu0FlwsFBwpn2LOCftmn8Lo0q-GQXMQ0SwimoOI5iRiibw8LZ7bEbv7wL_PL8CLIxAQ8X6swVgBQvwBvq2MWg</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Feiyu Chen</creator><creator>Bakic, Predrag R.</creator><creator>Maidment, Andrew D. A.</creator><creator>Jensen, Shane T.</creator><creator>Xiquan Shi</creator><creator>Pokrajac, David D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201510</creationdate><title>Description and Characterization of a Novel Method for Partial Volume Simulation in Software Breast Phantoms</title><author>Feiyu Chen ; Bakic, Predrag R. ; Maidment, Andrew D. A. ; Jensen, Shane T. ; Xiquan Shi ; Pokrajac, David D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-6ab5b18c74d71c6164d3a683c09b1ede508d5052e828ab8be5c775c0f937a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anthropomorphic breast phantom</topic><topic>Breast</topic><topic>Computer Simulation</topic><topic>digital mammography</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging phantoms</topic><topic>Ligaments</topic><topic>Linear approximation</topic><topic>Mammography - methods</topic><topic>Models, Biological</topic><topic>Monte Carlo</topic><topic>Monte Carlo simulation</topic><topic>partial volume simulation</topic><topic>Phantoms</topic><topic>Phantoms, Imaging</topic><topic>Quality</topic><topic>Skin</topic><toplevel>online_resources</toplevel><creatorcontrib>Feiyu Chen</creatorcontrib><creatorcontrib>Bakic, Predrag R.</creatorcontrib><creatorcontrib>Maidment, Andrew D. A.</creatorcontrib><creatorcontrib>Jensen, Shane T.</creatorcontrib><creatorcontrib>Xiquan Shi</creatorcontrib><creatorcontrib>Pokrajac, David D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feiyu Chen</au><au>Bakic, Predrag R.</au><au>Maidment, Andrew D. A.</au><au>Jensen, Shane T.</au><au>Xiquan Shi</au><au>Pokrajac, David D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Description and Characterization of a Novel Method for Partial Volume Simulation in Software Breast Phantoms</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2015-10</date><risdate>2015</risdate><volume>34</volume><issue>10</issue><spage>2146</spage><epage>2161</epage><pages>2146-2161</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>A modification to our previous simulation of breast anatomy is proposed to improve the quality of simulated x-ray projections images. The image quality is affected by the voxel size of the simulation. Large voxels can cause notable spatial quantization artifacts; small voxels extend the generation time and increase the memory requirements. An improvement in image quality is achievable without reducing voxel size by the simulation of partial volume averaging in which voxels containing more than one simulated tissue type are allowed. The linear x-ray attenuation coefficient of voxels is, thus, the sum of the linear attenuation coefficients weighted by the voxel subvolume occupied by each tissue type. A local planar approximation of the boundary surface is employed. In the two-material case, the partial volume in each voxel is computed by decomposition into up to four simple geometric shapes. In the three-material case, by application of the Gauss-Ostrogradsky theorem, the 3D partial volume problem is converted into one of a few simpler 2D surface area problems. We illustrate the benefits of the proposed methodology on simulated x-ray projections. An efficient encoding scheme is proposed for the type and proportion of simulated tissues in each voxel. Monte Carlo simulation was used to evaluate the quantitative error of our approximation algorithms.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25910056</pmid><doi>10.1109/TMI.2015.2424854</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2015-10, Vol.34 (10), p.2146-2161
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_journals_1729177323
source IEEE Electronic Library (IEL)
subjects Anthropomorphic breast phantom
Breast
Computer Simulation
digital mammography
Female
Humans
Image Processing, Computer-Assisted - methods
Imaging phantoms
Ligaments
Linear approximation
Mammography - methods
Models, Biological
Monte Carlo
Monte Carlo simulation
partial volume simulation
Phantoms
Phantoms, Imaging
Quality
Skin
title Description and Characterization of a Novel Method for Partial Volume Simulation in Software Breast Phantoms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Description%20and%20Characterization%20of%20a%20Novel%20Method%20for%20Partial%20Volume%20Simulation%20in%20Software%20Breast%20Phantoms&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Feiyu%20Chen&rft.date=2015-10&rft.volume=34&rft.issue=10&rft.spage=2146&rft.epage=2161&rft.pages=2146-2161&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2015.2424854&rft_dat=%3Cproquest_RIE%3E3855271241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729177323&rft_id=info:pmid/25910056&rft_ieee_id=7089303&rfr_iscdi=true