Building Image Feature Kinetics for Cement Hydration Using Gene Expression Programming With Similarity Weight Tournament Selection

The physical properties of cement are strongly influenced by the development of microstructure and cement hydration. Therefore, the investigation of microstructure for cement paste enables us to understand the hydration process and to predict the physical properties. However, the unreliability of ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2015-10, Vol.19 (5), p.679-693
Hauptverfasser: Wang, Lin, Yang, Bo, Wang, Shoude, Liang, Zhifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 693
container_issue 5
container_start_page 679
container_title IEEE transactions on evolutionary computation
container_volume 19
creator Wang, Lin
Yang, Bo
Wang, Shoude
Liang, Zhifeng
description The physical properties of cement are strongly influenced by the development of microstructure and cement hydration. Therefore, the investigation of microstructure for cement paste enables us to understand the hydration process and to predict the physical properties. However, the unreliability of phase classification and segmentation in an image affect the description of microstructure, as well as the prediction of properties and the simulation of hydration. This paper studies the dynamic relationship between microstructure and physical properties from the image itself. The relationship between compressive strength and microstructure image features is built as the form of image feature kinetics using gene expression programming from observed microtomography images. A similarity weight tournament selection is also proposed to increase the diversity of population and improve the performance. Experimental results manifest that the evolved image feature kinetics not only perform well in fitting training data but also exhibit superior generalization ability.
doi_str_mv 10.1109/TEVC.2014.2367111
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1729177169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6948258</ieee_id><sourcerecordid>3855271501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-25eda92ba86f7f04c5d79dba546ac53b0687d2d9d05898bdd41f6a96a2ddcb813</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhgdRsFYfQNwEXE_NyczkstTSGwoKVutuyEzO1MhcapKC3frkdqy4OuHk-38OXxRdAh0BUHWznLyOR4xCOmIJFwBwFA1ApRBTyvjx_k2lioWQb6fRmfcfdE9moAbR993W1sa2a7Jo9BrJFHXYOiT3tsVgS0-qzpExNtgGMt8Zp4PtWvLi-8QMWySTr41D7_vtk-vWTjdN_7ey4Z0828bW2tmwIyu06_dAlt3Wtfq37RlrLPu28-ik0rXHi785jF6mk-V4Hj88zhbj24e4ZCoJMcvQaMUKLXklKpqWmRHKFDpLuS6zpKBcCsOMMjSTShbGpFBxrbhmxpSFhGQYXR96N6773KIP-cfvNbXPQTAFQgBXewoOVOk67x1W-cbZRrtdDjTvVee96rxXnf-p3meuDhmLiP88V6lkmUx-AEmMfTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729177169</pqid></control><display><type>article</type><title>Building Image Feature Kinetics for Cement Hydration Using Gene Expression Programming With Similarity Weight Tournament Selection</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Lin ; Yang, Bo ; Wang, Shoude ; Liang, Zhifeng</creator><creatorcontrib>Wang, Lin ; Yang, Bo ; Wang, Shoude ; Liang, Zhifeng</creatorcontrib><description>The physical properties of cement are strongly influenced by the development of microstructure and cement hydration. Therefore, the investigation of microstructure for cement paste enables us to understand the hydration process and to predict the physical properties. However, the unreliability of phase classification and segmentation in an image affect the description of microstructure, as well as the prediction of properties and the simulation of hydration. This paper studies the dynamic relationship between microstructure and physical properties from the image itself. The relationship between compressive strength and microstructure image features is built as the form of image feature kinetics using gene expression programming from observed microtomography images. A similarity weight tournament selection is also proposed to increase the diversity of population and improve the performance. Experimental results manifest that the evolved image feature kinetics not only perform well in fitting training data but also exhibit superior generalization ability.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2014.2367111</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alloys ; Biological cells ; Cement Hydration Kinetics ; Computational modeling ; Evolutionary Computation ; Gene expression ; Image segmentation ; Microstructure ; Physical properties ; Predictive models ; Reverse Modeling ; Similarity Weight Tournament ; Sociology ; Statistics</subject><ispartof>IEEE transactions on evolutionary computation, 2015-10, Vol.19 (5), p.679-693</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-25eda92ba86f7f04c5d79dba546ac53b0687d2d9d05898bdd41f6a96a2ddcb813</citedby><cites>FETCH-LOGICAL-c293t-25eda92ba86f7f04c5d79dba546ac53b0687d2d9d05898bdd41f6a96a2ddcb813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6948258$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6948258$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Wang, Shoude</creatorcontrib><creatorcontrib>Liang, Zhifeng</creatorcontrib><title>Building Image Feature Kinetics for Cement Hydration Using Gene Expression Programming With Similarity Weight Tournament Selection</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>The physical properties of cement are strongly influenced by the development of microstructure and cement hydration. Therefore, the investigation of microstructure for cement paste enables us to understand the hydration process and to predict the physical properties. However, the unreliability of phase classification and segmentation in an image affect the description of microstructure, as well as the prediction of properties and the simulation of hydration. This paper studies the dynamic relationship between microstructure and physical properties from the image itself. The relationship between compressive strength and microstructure image features is built as the form of image feature kinetics using gene expression programming from observed microtomography images. A similarity weight tournament selection is also proposed to increase the diversity of population and improve the performance. Experimental results manifest that the evolved image feature kinetics not only perform well in fitting training data but also exhibit superior generalization ability.</description><subject>Alloys</subject><subject>Biological cells</subject><subject>Cement Hydration Kinetics</subject><subject>Computational modeling</subject><subject>Evolutionary Computation</subject><subject>Gene expression</subject><subject>Image segmentation</subject><subject>Microstructure</subject><subject>Physical properties</subject><subject>Predictive models</subject><subject>Reverse Modeling</subject><subject>Similarity Weight Tournament</subject><subject>Sociology</subject><subject>Statistics</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtKAzEUhgdRsFYfQNwEXE_NyczkstTSGwoKVutuyEzO1MhcapKC3frkdqy4OuHk-38OXxRdAh0BUHWznLyOR4xCOmIJFwBwFA1ApRBTyvjx_k2lioWQb6fRmfcfdE9moAbR993W1sa2a7Jo9BrJFHXYOiT3tsVgS0-qzpExNtgGMt8Zp4PtWvLi-8QMWySTr41D7_vtk-vWTjdN_7ey4Z0828bW2tmwIyu06_dAlt3Wtfq37RlrLPu28-ik0rXHi785jF6mk-V4Hj88zhbj24e4ZCoJMcvQaMUKLXklKpqWmRHKFDpLuS6zpKBcCsOMMjSTShbGpFBxrbhmxpSFhGQYXR96N6773KIP-cfvNbXPQTAFQgBXewoOVOk67x1W-cbZRrtdDjTvVee96rxXnf-p3meuDhmLiP88V6lkmUx-AEmMfTo</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Wang, Lin</creator><creator>Yang, Bo</creator><creator>Wang, Shoude</creator><creator>Liang, Zhifeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201510</creationdate><title>Building Image Feature Kinetics for Cement Hydration Using Gene Expression Programming With Similarity Weight Tournament Selection</title><author>Wang, Lin ; Yang, Bo ; Wang, Shoude ; Liang, Zhifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-25eda92ba86f7f04c5d79dba546ac53b0687d2d9d05898bdd41f6a96a2ddcb813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloys</topic><topic>Biological cells</topic><topic>Cement Hydration Kinetics</topic><topic>Computational modeling</topic><topic>Evolutionary Computation</topic><topic>Gene expression</topic><topic>Image segmentation</topic><topic>Microstructure</topic><topic>Physical properties</topic><topic>Predictive models</topic><topic>Reverse Modeling</topic><topic>Similarity Weight Tournament</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Wang, Shoude</creatorcontrib><creatorcontrib>Liang, Zhifeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Lin</au><au>Yang, Bo</au><au>Wang, Shoude</au><au>Liang, Zhifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building Image Feature Kinetics for Cement Hydration Using Gene Expression Programming With Similarity Weight Tournament Selection</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2015-10</date><risdate>2015</risdate><volume>19</volume><issue>5</issue><spage>679</spage><epage>693</epage><pages>679-693</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>The physical properties of cement are strongly influenced by the development of microstructure and cement hydration. Therefore, the investigation of microstructure for cement paste enables us to understand the hydration process and to predict the physical properties. However, the unreliability of phase classification and segmentation in an image affect the description of microstructure, as well as the prediction of properties and the simulation of hydration. This paper studies the dynamic relationship between microstructure and physical properties from the image itself. The relationship between compressive strength and microstructure image features is built as the form of image feature kinetics using gene expression programming from observed microtomography images. A similarity weight tournament selection is also proposed to increase the diversity of population and improve the performance. Experimental results manifest that the evolved image feature kinetics not only perform well in fitting training data but also exhibit superior generalization ability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2014.2367111</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2015-10, Vol.19 (5), p.679-693
issn 1089-778X
1941-0026
language eng
recordid cdi_proquest_journals_1729177169
source IEEE Electronic Library (IEL)
subjects Alloys
Biological cells
Cement Hydration Kinetics
Computational modeling
Evolutionary Computation
Gene expression
Image segmentation
Microstructure
Physical properties
Predictive models
Reverse Modeling
Similarity Weight Tournament
Sociology
Statistics
title Building Image Feature Kinetics for Cement Hydration Using Gene Expression Programming With Similarity Weight Tournament Selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20Image%20Feature%20Kinetics%20for%20Cement%20Hydration%20Using%20Gene%20Expression%20Programming%20With%20Similarity%20Weight%20Tournament%20Selection&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Wang,%20Lin&rft.date=2015-10&rft.volume=19&rft.issue=5&rft.spage=679&rft.epage=693&rft.pages=679-693&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2014.2367111&rft_dat=%3Cproquest_RIE%3E3855271501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729177169&rft_id=info:pmid/&rft_ieee_id=6948258&rfr_iscdi=true