Building Image Feature Kinetics for Cement Hydration Using Gene Expression Programming With Similarity Weight Tournament Selection
The physical properties of cement are strongly influenced by the development of microstructure and cement hydration. Therefore, the investigation of microstructure for cement paste enables us to understand the hydration process and to predict the physical properties. However, the unreliability of ph...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2015-10, Vol.19 (5), p.679-693 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 693 |
---|---|
container_issue | 5 |
container_start_page | 679 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 19 |
creator | Wang, Lin Yang, Bo Wang, Shoude Liang, Zhifeng |
description | The physical properties of cement are strongly influenced by the development of microstructure and cement hydration. Therefore, the investigation of microstructure for cement paste enables us to understand the hydration process and to predict the physical properties. However, the unreliability of phase classification and segmentation in an image affect the description of microstructure, as well as the prediction of properties and the simulation of hydration. This paper studies the dynamic relationship between microstructure and physical properties from the image itself. The relationship between compressive strength and microstructure image features is built as the form of image feature kinetics using gene expression programming from observed microtomography images. A similarity weight tournament selection is also proposed to increase the diversity of population and improve the performance. Experimental results manifest that the evolved image feature kinetics not only perform well in fitting training data but also exhibit superior generalization ability. |
doi_str_mv | 10.1109/TEVC.2014.2367111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1729177169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6948258</ieee_id><sourcerecordid>3855271501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-25eda92ba86f7f04c5d79dba546ac53b0687d2d9d05898bdd41f6a96a2ddcb813</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhgdRsFYfQNwEXE_NyczkstTSGwoKVutuyEzO1MhcapKC3frkdqy4OuHk-38OXxRdAh0BUHWznLyOR4xCOmIJFwBwFA1ApRBTyvjx_k2lioWQb6fRmfcfdE9moAbR993W1sa2a7Jo9BrJFHXYOiT3tsVgS0-qzpExNtgGMt8Zp4PtWvLi-8QMWySTr41D7_vtk-vWTjdN_7ey4Z0828bW2tmwIyu06_dAlt3Wtfq37RlrLPu28-ik0rXHi785jF6mk-V4Hj88zhbj24e4ZCoJMcvQaMUKLXklKpqWmRHKFDpLuS6zpKBcCsOMMjSTShbGpFBxrbhmxpSFhGQYXR96N6773KIP-cfvNbXPQTAFQgBXewoOVOk67x1W-cbZRrtdDjTvVee96rxXnf-p3meuDhmLiP88V6lkmUx-AEmMfTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729177169</pqid></control><display><type>article</type><title>Building Image Feature Kinetics for Cement Hydration Using Gene Expression Programming With Similarity Weight Tournament Selection</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Lin ; Yang, Bo ; Wang, Shoude ; Liang, Zhifeng</creator><creatorcontrib>Wang, Lin ; Yang, Bo ; Wang, Shoude ; Liang, Zhifeng</creatorcontrib><description>The physical properties of cement are strongly influenced by the development of microstructure and cement hydration. Therefore, the investigation of microstructure for cement paste enables us to understand the hydration process and to predict the physical properties. However, the unreliability of phase classification and segmentation in an image affect the description of microstructure, as well as the prediction of properties and the simulation of hydration. This paper studies the dynamic relationship between microstructure and physical properties from the image itself. The relationship between compressive strength and microstructure image features is built as the form of image feature kinetics using gene expression programming from observed microtomography images. A similarity weight tournament selection is also proposed to increase the diversity of population and improve the performance. Experimental results manifest that the evolved image feature kinetics not only perform well in fitting training data but also exhibit superior generalization ability.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2014.2367111</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alloys ; Biological cells ; Cement Hydration Kinetics ; Computational modeling ; Evolutionary Computation ; Gene expression ; Image segmentation ; Microstructure ; Physical properties ; Predictive models ; Reverse Modeling ; Similarity Weight Tournament ; Sociology ; Statistics</subject><ispartof>IEEE transactions on evolutionary computation, 2015-10, Vol.19 (5), p.679-693</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-25eda92ba86f7f04c5d79dba546ac53b0687d2d9d05898bdd41f6a96a2ddcb813</citedby><cites>FETCH-LOGICAL-c293t-25eda92ba86f7f04c5d79dba546ac53b0687d2d9d05898bdd41f6a96a2ddcb813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6948258$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6948258$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Wang, Shoude</creatorcontrib><creatorcontrib>Liang, Zhifeng</creatorcontrib><title>Building Image Feature Kinetics for Cement Hydration Using Gene Expression Programming With Similarity Weight Tournament Selection</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>The physical properties of cement are strongly influenced by the development of microstructure and cement hydration. Therefore, the investigation of microstructure for cement paste enables us to understand the hydration process and to predict the physical properties. However, the unreliability of phase classification and segmentation in an image affect the description of microstructure, as well as the prediction of properties and the simulation of hydration. This paper studies the dynamic relationship between microstructure and physical properties from the image itself. The relationship between compressive strength and microstructure image features is built as the form of image feature kinetics using gene expression programming from observed microtomography images. A similarity weight tournament selection is also proposed to increase the diversity of population and improve the performance. Experimental results manifest that the evolved image feature kinetics not only perform well in fitting training data but also exhibit superior generalization ability.</description><subject>Alloys</subject><subject>Biological cells</subject><subject>Cement Hydration Kinetics</subject><subject>Computational modeling</subject><subject>Evolutionary Computation</subject><subject>Gene expression</subject><subject>Image segmentation</subject><subject>Microstructure</subject><subject>Physical properties</subject><subject>Predictive models</subject><subject>Reverse Modeling</subject><subject>Similarity Weight Tournament</subject><subject>Sociology</subject><subject>Statistics</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtKAzEUhgdRsFYfQNwEXE_NyczkstTSGwoKVutuyEzO1MhcapKC3frkdqy4OuHk-38OXxRdAh0BUHWznLyOR4xCOmIJFwBwFA1ApRBTyvjx_k2lioWQb6fRmfcfdE9moAbR993W1sa2a7Jo9BrJFHXYOiT3tsVgS0-qzpExNtgGMt8Zp4PtWvLi-8QMWySTr41D7_vtk-vWTjdN_7ey4Z0828bW2tmwIyu06_dAlt3Wtfq37RlrLPu28-ik0rXHi785jF6mk-V4Hj88zhbj24e4ZCoJMcvQaMUKLXklKpqWmRHKFDpLuS6zpKBcCsOMMjSTShbGpFBxrbhmxpSFhGQYXR96N6773KIP-cfvNbXPQTAFQgBXewoOVOk67x1W-cbZRrtdDjTvVee96rxXnf-p3meuDhmLiP88V6lkmUx-AEmMfTo</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Wang, Lin</creator><creator>Yang, Bo</creator><creator>Wang, Shoude</creator><creator>Liang, Zhifeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201510</creationdate><title>Building Image Feature Kinetics for Cement Hydration Using Gene Expression Programming With Similarity Weight Tournament Selection</title><author>Wang, Lin ; Yang, Bo ; Wang, Shoude ; Liang, Zhifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-25eda92ba86f7f04c5d79dba546ac53b0687d2d9d05898bdd41f6a96a2ddcb813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloys</topic><topic>Biological cells</topic><topic>Cement Hydration Kinetics</topic><topic>Computational modeling</topic><topic>Evolutionary Computation</topic><topic>Gene expression</topic><topic>Image segmentation</topic><topic>Microstructure</topic><topic>Physical properties</topic><topic>Predictive models</topic><topic>Reverse Modeling</topic><topic>Similarity Weight Tournament</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Wang, Shoude</creatorcontrib><creatorcontrib>Liang, Zhifeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Lin</au><au>Yang, Bo</au><au>Wang, Shoude</au><au>Liang, Zhifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building Image Feature Kinetics for Cement Hydration Using Gene Expression Programming With Similarity Weight Tournament Selection</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2015-10</date><risdate>2015</risdate><volume>19</volume><issue>5</issue><spage>679</spage><epage>693</epage><pages>679-693</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>The physical properties of cement are strongly influenced by the development of microstructure and cement hydration. Therefore, the investigation of microstructure for cement paste enables us to understand the hydration process and to predict the physical properties. However, the unreliability of phase classification and segmentation in an image affect the description of microstructure, as well as the prediction of properties and the simulation of hydration. This paper studies the dynamic relationship between microstructure and physical properties from the image itself. The relationship between compressive strength and microstructure image features is built as the form of image feature kinetics using gene expression programming from observed microtomography images. A similarity weight tournament selection is also proposed to increase the diversity of population and improve the performance. Experimental results manifest that the evolved image feature kinetics not only perform well in fitting training data but also exhibit superior generalization ability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2014.2367111</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2015-10, Vol.19 (5), p.679-693 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_proquest_journals_1729177169 |
source | IEEE Electronic Library (IEL) |
subjects | Alloys Biological cells Cement Hydration Kinetics Computational modeling Evolutionary Computation Gene expression Image segmentation Microstructure Physical properties Predictive models Reverse Modeling Similarity Weight Tournament Sociology Statistics |
title | Building Image Feature Kinetics for Cement Hydration Using Gene Expression Programming With Similarity Weight Tournament Selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20Image%20Feature%20Kinetics%20for%20Cement%20Hydration%20Using%20Gene%20Expression%20Programming%20With%20Similarity%20Weight%20Tournament%20Selection&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Wang,%20Lin&rft.date=2015-10&rft.volume=19&rft.issue=5&rft.spage=679&rft.epage=693&rft.pages=679-693&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2014.2367111&rft_dat=%3Cproquest_RIE%3E3855271501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729177169&rft_id=info:pmid/&rft_ieee_id=6948258&rfr_iscdi=true |