Dual Graph Regularized Latent Low-Rank Representation for Subspace Clustering
Low-rank representation (LRR) has received considerable attention in subspace segmentation due to its effectiveness in exploring low-dimensional subspace structures embedded in data. To preserve the intrinsic geometrical structure of data, a graph regularizer has been introduced into LRR framework f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2015-12, Vol.24 (12), p.4918-4933 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4933 |
---|---|
container_issue | 12 |
container_start_page | 4918 |
container_title | IEEE transactions on image processing |
container_volume | 24 |
creator | Yin, Ming Gao, Junbin Lin, Zhouchen Shi, Qinfeng Guo, Yi |
description | Low-rank representation (LRR) has received considerable attention in subspace segmentation due to its effectiveness in exploring low-dimensional subspace structures embedded in data. To preserve the intrinsic geometrical structure of data, a graph regularizer has been introduced into LRR framework for learning the locality and similarity information within data. However, it is often the case that not only the high-dimensional data reside on a non-linear low-dimensional manifold in the ambient space, but also their features lie on a manifold in feature space. In this paper, we propose a dual graph regularized LRR model (DGLRR) by enforcing preservation of geometric information in both the ambient space and the feature space. The proposed method aims for simultaneously considering the geometric structures of the data manifold and the feature manifold. Furthermore, we extend the DGLRR model to include non-negative constraint, leading to a parts-based representation of data. Experiments are conducted on several image data sets to demonstrate that the proposed method outperforms the state-of-the-art approaches in image clustering. |
doi_str_mv | 10.1109/TIP.2015.2472277 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1729175595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7219431</ieee_id><sourcerecordid>3855254361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-ad33526424192f3772050d4a548951dd644321a8accdca6a89d4c325d20d59e13</originalsourceid><addsrcrecordid>eNpdkc1LwzAYh4Mobk7vgiAFL1468-ajaY4ydQ4mypznkjXp7OzamjSI_vVmbO7gKSG_5_3gCULngIcAWN7MJy9DgoEPCROECHGA-iAZxBgzchjumItYAJM9dOLcCmNgHJJj1CMJhQQI76OnO6-qaGxV-x7NzNJXypY_RkdT1Zm6i6bNVzxT9UfIWmtceFJd2dRR0djo1S9cq3ITjSrvOmPLenmKjgpVOXO2Owfo7eF-PnqMp8_jyeh2GueUiS5WmlJOEkYYSFJQIQjmWDPFWSo5aJ0wRgmoVOW5zlWiUqlZTgnXBGsuDdABut72bW3z6Y3rsnXpclNVqjaNdxkISLFIw5SAXv1DV423ddguUESC4FxuKLylcts4Z02RtbZcK_udAc42qrOgOtuoznaqQ8nlrrFfrI3eF_y5DcDFFiiNMftYkPBDFOgvyAeAGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729175595</pqid></control><display><type>article</type><title>Dual Graph Regularized Latent Low-Rank Representation for Subspace Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Yin, Ming ; Gao, Junbin ; Lin, Zhouchen ; Shi, Qinfeng ; Guo, Yi</creator><creatorcontrib>Yin, Ming ; Gao, Junbin ; Lin, Zhouchen ; Shi, Qinfeng ; Guo, Yi</creatorcontrib><description>Low-rank representation (LRR) has received considerable attention in subspace segmentation due to its effectiveness in exploring low-dimensional subspace structures embedded in data. To preserve the intrinsic geometrical structure of data, a graph regularizer has been introduced into LRR framework for learning the locality and similarity information within data. However, it is often the case that not only the high-dimensional data reside on a non-linear low-dimensional manifold in the ambient space, but also their features lie on a manifold in feature space. In this paper, we propose a dual graph regularized LRR model (DGLRR) by enforcing preservation of geometric information in both the ambient space and the feature space. The proposed method aims for simultaneously considering the geometric structures of the data manifold and the feature manifold. Furthermore, we extend the DGLRR model to include non-negative constraint, leading to a parts-based representation of data. Experiments are conducted on several image data sets to demonstrate that the proposed method outperforms the state-of-the-art approaches in image clustering.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2015.2472277</identifier><identifier>PMID: 26316125</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Australia ; Convergence ; Data models ; Dual graph regularization ; Graph Laplacian ; Image clustering ; Laplace equations ; Low-rank representation ; Manifold structure ; Manifolds ; Noise ; Optimization</subject><ispartof>IEEE transactions on image processing, 2015-12, Vol.24 (12), p.4918-4933</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-ad33526424192f3772050d4a548951dd644321a8accdca6a89d4c325d20d59e13</citedby><cites>FETCH-LOGICAL-c347t-ad33526424192f3772050d4a548951dd644321a8accdca6a89d4c325d20d59e13</cites><orcidid>0000-0001-9803-0256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7219431$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7219431$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26316125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Ming</creatorcontrib><creatorcontrib>Gao, Junbin</creatorcontrib><creatorcontrib>Lin, Zhouchen</creatorcontrib><creatorcontrib>Shi, Qinfeng</creatorcontrib><creatorcontrib>Guo, Yi</creatorcontrib><title>Dual Graph Regularized Latent Low-Rank Representation for Subspace Clustering</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Low-rank representation (LRR) has received considerable attention in subspace segmentation due to its effectiveness in exploring low-dimensional subspace structures embedded in data. To preserve the intrinsic geometrical structure of data, a graph regularizer has been introduced into LRR framework for learning the locality and similarity information within data. However, it is often the case that not only the high-dimensional data reside on a non-linear low-dimensional manifold in the ambient space, but also their features lie on a manifold in feature space. In this paper, we propose a dual graph regularized LRR model (DGLRR) by enforcing preservation of geometric information in both the ambient space and the feature space. The proposed method aims for simultaneously considering the geometric structures of the data manifold and the feature manifold. Furthermore, we extend the DGLRR model to include non-negative constraint, leading to a parts-based representation of data. Experiments are conducted on several image data sets to demonstrate that the proposed method outperforms the state-of-the-art approaches in image clustering.</description><subject>Australia</subject><subject>Convergence</subject><subject>Data models</subject><subject>Dual graph regularization</subject><subject>Graph Laplacian</subject><subject>Image clustering</subject><subject>Laplace equations</subject><subject>Low-rank representation</subject><subject>Manifold structure</subject><subject>Manifolds</subject><subject>Noise</subject><subject>Optimization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1LwzAYh4Mobk7vgiAFL1468-ajaY4ydQ4mypznkjXp7OzamjSI_vVmbO7gKSG_5_3gCULngIcAWN7MJy9DgoEPCROECHGA-iAZxBgzchjumItYAJM9dOLcCmNgHJJj1CMJhQQI76OnO6-qaGxV-x7NzNJXypY_RkdT1Zm6i6bNVzxT9UfIWmtceFJd2dRR0djo1S9cq3ITjSrvOmPLenmKjgpVOXO2Owfo7eF-PnqMp8_jyeh2GueUiS5WmlJOEkYYSFJQIQjmWDPFWSo5aJ0wRgmoVOW5zlWiUqlZTgnXBGsuDdABut72bW3z6Y3rsnXpclNVqjaNdxkISLFIw5SAXv1DV423ddguUESC4FxuKLylcts4Z02RtbZcK_udAc42qrOgOtuoznaqQ8nlrrFfrI3eF_y5DcDFFiiNMftYkPBDFOgvyAeAGQ</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Yin, Ming</creator><creator>Gao, Junbin</creator><creator>Lin, Zhouchen</creator><creator>Shi, Qinfeng</creator><creator>Guo, Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9803-0256</orcidid></search><sort><creationdate>201512</creationdate><title>Dual Graph Regularized Latent Low-Rank Representation for Subspace Clustering</title><author>Yin, Ming ; Gao, Junbin ; Lin, Zhouchen ; Shi, Qinfeng ; Guo, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-ad33526424192f3772050d4a548951dd644321a8accdca6a89d4c325d20d59e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Australia</topic><topic>Convergence</topic><topic>Data models</topic><topic>Dual graph regularization</topic><topic>Graph Laplacian</topic><topic>Image clustering</topic><topic>Laplace equations</topic><topic>Low-rank representation</topic><topic>Manifold structure</topic><topic>Manifolds</topic><topic>Noise</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Ming</creatorcontrib><creatorcontrib>Gao, Junbin</creatorcontrib><creatorcontrib>Lin, Zhouchen</creatorcontrib><creatorcontrib>Shi, Qinfeng</creatorcontrib><creatorcontrib>Guo, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yin, Ming</au><au>Gao, Junbin</au><au>Lin, Zhouchen</au><au>Shi, Qinfeng</au><au>Guo, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Graph Regularized Latent Low-Rank Representation for Subspace Clustering</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2015-12</date><risdate>2015</risdate><volume>24</volume><issue>12</issue><spage>4918</spage><epage>4933</epage><pages>4918-4933</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Low-rank representation (LRR) has received considerable attention in subspace segmentation due to its effectiveness in exploring low-dimensional subspace structures embedded in data. To preserve the intrinsic geometrical structure of data, a graph regularizer has been introduced into LRR framework for learning the locality and similarity information within data. However, it is often the case that not only the high-dimensional data reside on a non-linear low-dimensional manifold in the ambient space, but also their features lie on a manifold in feature space. In this paper, we propose a dual graph regularized LRR model (DGLRR) by enforcing preservation of geometric information in both the ambient space and the feature space. The proposed method aims for simultaneously considering the geometric structures of the data manifold and the feature manifold. Furthermore, we extend the DGLRR model to include non-negative constraint, leading to a parts-based representation of data. Experiments are conducted on several image data sets to demonstrate that the proposed method outperforms the state-of-the-art approaches in image clustering.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26316125</pmid><doi>10.1109/TIP.2015.2472277</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9803-0256</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2015-12, Vol.24 (12), p.4918-4933 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_journals_1729175595 |
source | IEEE Electronic Library (IEL) |
subjects | Australia Convergence Data models Dual graph regularization Graph Laplacian Image clustering Laplace equations Low-rank representation Manifold structure Manifolds Noise Optimization |
title | Dual Graph Regularized Latent Low-Rank Representation for Subspace Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Graph%20Regularized%20Latent%20Low-Rank%20Representation%20for%20Subspace%20Clustering&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Yin,%20Ming&rft.date=2015-12&rft.volume=24&rft.issue=12&rft.spage=4918&rft.epage=4933&rft.pages=4918-4933&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2015.2472277&rft_dat=%3Cproquest_RIE%3E3855254361%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729175595&rft_id=info:pmid/26316125&rft_ieee_id=7219431&rfr_iscdi=true |