Visual Quality Evaluation of Image Object Segmentation: Subjective Assessment and Objective Measure

A visual quality evaluation of image object segmentation as one member of the visual quality evaluation family has been studied over the years. Researchers aim at developing the objective measures that can evaluate the visual quality of object segmentation results in agreement with human quality jud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2015-12, Vol.24 (12), p.5033-5045
Hauptverfasser: Ran Shi, King Ngi Ngan, Songnan Li, Paramesran, Raveendran, Hongliang Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5045
container_issue 12
container_start_page 5033
container_title IEEE transactions on image processing
container_volume 24
creator Ran Shi
King Ngi Ngan
Songnan Li
Paramesran, Raveendran
Hongliang Li
description A visual quality evaluation of image object segmentation as one member of the visual quality evaluation family has been studied over the years. Researchers aim at developing the objective measures that can evaluate the visual quality of object segmentation results in agreement with human quality judgments. It is also significant to construct a platform for evaluating the performance of the objective measures in order to analyze their pros and cons. In this paper, first, we present a novel subjective object segmentation visual quality database, in which a total of 255 segmentation results were evaluated by more than thirty human subjects. Then, we propose a novel full-reference objective measure for an object segmentation visual quality evaluation, which involves four human visual properties. Finally, our measure is compared with some state-of-the-art objective measures on our database. The experiment demonstrates that the proposed measure performs better in matching subjective judgments. Moreover, the database is available publicly for other researchers in the field to evaluate their measures.
doi_str_mv 10.1109/TIP.2015.2473099
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1729175401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7222418</ieee_id><sourcerecordid>1718078381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-8ea8ab9b0d468ec952123611d8bd9df5b00cef0e66517610e581632ef919eb4e3</originalsourceid><addsrcrecordid>eNpdkclLxUAMxgdR3O-CIANevPSZzExn8Sbi8kBRcbmWaZtKH1200wr-97a-pwcvScj3Swj5GDtAmCGCO32eP8wEYDwTykhwbo1to1MYASixPtYQm8igcltsJ4QFAKoY9SbbElqiRgnbLHstw-Ar_jiGsv_il5--Gnxftg1vCz6v_Rvx-3RBWc-f6K2mpv8Rz_jT8NMtP4mfh0AhTBr3Tb7CJ-GOfBg62mMbha8C7a_yLnu5uny-uIlu76_nF-e3USaV6SNL3vrUpZArbSlzsUAhNWJu09zlRZwCZFQAaR2j0QgUW9RSUOHQUapI7rKT5d73rv0YKPRJXYaMqso31A4hQYMWjJUWR_T4H7poh64Zrxsp4dDECiYKllTWtSF0VCTvXVn77itBSCYDktGAZDIgWRkwjhytFg9pTfnfwO_HR-BwCZRE9CcbIYRCK78BWbqJIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729175401</pqid></control><display><type>article</type><title>Visual Quality Evaluation of Image Object Segmentation: Subjective Assessment and Objective Measure</title><source>IEEE Electronic Library (IEL)</source><creator>Ran Shi ; King Ngi Ngan ; Songnan Li ; Paramesran, Raveendran ; Hongliang Li</creator><creatorcontrib>Ran Shi ; King Ngi Ngan ; Songnan Li ; Paramesran, Raveendran ; Hongliang Li</creatorcontrib><description>A visual quality evaluation of image object segmentation as one member of the visual quality evaluation family has been studied over the years. Researchers aim at developing the objective measures that can evaluate the visual quality of object segmentation results in agreement with human quality judgments. It is also significant to construct a platform for evaluating the performance of the objective measures in order to analyze their pros and cons. In this paper, first, we present a novel subjective object segmentation visual quality database, in which a total of 255 segmentation results were evaluated by more than thirty human subjects. Then, we propose a novel full-reference objective measure for an object segmentation visual quality evaluation, which involves four human visual properties. Finally, our measure is compared with some state-of-the-art objective measures on our database. The experiment demonstrates that the proposed measure performs better in matching subjective judgments. Moreover, the database is available publicly for other researchers in the field to evaluate their measures.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2015.2473099</identifier><identifier>PMID: 26316130</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Databases, Factual - classification ; Databases, Factual - standards ; Distortion measurement ; Humans ; Image Processing, Computer-Assisted - methods ; Image Processing, Computer-Assisted - standards ; Image segmentation ; Object segmentation ; Objective Measure ; Onions ; Semantics ; Subjective Evaluation ; Visual databases ; Visual Quality ; Visualization</subject><ispartof>IEEE transactions on image processing, 2015-12, Vol.24 (12), p.5033-5045</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-8ea8ab9b0d468ec952123611d8bd9df5b00cef0e66517610e581632ef919eb4e3</citedby><cites>FETCH-LOGICAL-c347t-8ea8ab9b0d468ec952123611d8bd9df5b00cef0e66517610e581632ef919eb4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7222418$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7222418$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26316130$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ran Shi</creatorcontrib><creatorcontrib>King Ngi Ngan</creatorcontrib><creatorcontrib>Songnan Li</creatorcontrib><creatorcontrib>Paramesran, Raveendran</creatorcontrib><creatorcontrib>Hongliang Li</creatorcontrib><title>Visual Quality Evaluation of Image Object Segmentation: Subjective Assessment and Objective Measure</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>A visual quality evaluation of image object segmentation as one member of the visual quality evaluation family has been studied over the years. Researchers aim at developing the objective measures that can evaluate the visual quality of object segmentation results in agreement with human quality judgments. It is also significant to construct a platform for evaluating the performance of the objective measures in order to analyze their pros and cons. In this paper, first, we present a novel subjective object segmentation visual quality database, in which a total of 255 segmentation results were evaluated by more than thirty human subjects. Then, we propose a novel full-reference objective measure for an object segmentation visual quality evaluation, which involves four human visual properties. Finally, our measure is compared with some state-of-the-art objective measures on our database. The experiment demonstrates that the proposed measure performs better in matching subjective judgments. Moreover, the database is available publicly for other researchers in the field to evaluate their measures.</description><subject>Algorithms</subject><subject>Databases, Factual - classification</subject><subject>Databases, Factual - standards</subject><subject>Distortion measurement</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - standards</subject><subject>Image segmentation</subject><subject>Object segmentation</subject><subject>Objective Measure</subject><subject>Onions</subject><subject>Semantics</subject><subject>Subjective Evaluation</subject><subject>Visual databases</subject><subject>Visual Quality</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkclLxUAMxgdR3O-CIANevPSZzExn8Sbi8kBRcbmWaZtKH1200wr-97a-pwcvScj3Swj5GDtAmCGCO32eP8wEYDwTykhwbo1to1MYASixPtYQm8igcltsJ4QFAKoY9SbbElqiRgnbLHstw-Ar_jiGsv_il5--Gnxftg1vCz6v_Rvx-3RBWc-f6K2mpv8Rz_jT8NMtP4mfh0AhTBr3Tb7CJ-GOfBg62mMbha8C7a_yLnu5uny-uIlu76_nF-e3USaV6SNL3vrUpZArbSlzsUAhNWJu09zlRZwCZFQAaR2j0QgUW9RSUOHQUapI7rKT5d73rv0YKPRJXYaMqso31A4hQYMWjJUWR_T4H7poh64Zrxsp4dDECiYKllTWtSF0VCTvXVn77itBSCYDktGAZDIgWRkwjhytFg9pTfnfwO_HR-BwCZRE9CcbIYRCK78BWbqJIw</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Ran Shi</creator><creator>King Ngi Ngan</creator><creator>Songnan Li</creator><creator>Paramesran, Raveendran</creator><creator>Hongliang Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201512</creationdate><title>Visual Quality Evaluation of Image Object Segmentation: Subjective Assessment and Objective Measure</title><author>Ran Shi ; King Ngi Ngan ; Songnan Li ; Paramesran, Raveendran ; Hongliang Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-8ea8ab9b0d468ec952123611d8bd9df5b00cef0e66517610e581632ef919eb4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Databases, Factual - classification</topic><topic>Databases, Factual - standards</topic><topic>Distortion measurement</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - standards</topic><topic>Image segmentation</topic><topic>Object segmentation</topic><topic>Objective Measure</topic><topic>Onions</topic><topic>Semantics</topic><topic>Subjective Evaluation</topic><topic>Visual databases</topic><topic>Visual Quality</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ran Shi</creatorcontrib><creatorcontrib>King Ngi Ngan</creatorcontrib><creatorcontrib>Songnan Li</creatorcontrib><creatorcontrib>Paramesran, Raveendran</creatorcontrib><creatorcontrib>Hongliang Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ran Shi</au><au>King Ngi Ngan</au><au>Songnan Li</au><au>Paramesran, Raveendran</au><au>Hongliang Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual Quality Evaluation of Image Object Segmentation: Subjective Assessment and Objective Measure</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2015-12</date><risdate>2015</risdate><volume>24</volume><issue>12</issue><spage>5033</spage><epage>5045</epage><pages>5033-5045</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>A visual quality evaluation of image object segmentation as one member of the visual quality evaluation family has been studied over the years. Researchers aim at developing the objective measures that can evaluate the visual quality of object segmentation results in agreement with human quality judgments. It is also significant to construct a platform for evaluating the performance of the objective measures in order to analyze their pros and cons. In this paper, first, we present a novel subjective object segmentation visual quality database, in which a total of 255 segmentation results were evaluated by more than thirty human subjects. Then, we propose a novel full-reference objective measure for an object segmentation visual quality evaluation, which involves four human visual properties. Finally, our measure is compared with some state-of-the-art objective measures on our database. The experiment demonstrates that the proposed measure performs better in matching subjective judgments. Moreover, the database is available publicly for other researchers in the field to evaluate their measures.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26316130</pmid><doi>10.1109/TIP.2015.2473099</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2015-12, Vol.24 (12), p.5033-5045
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_journals_1729175401
source IEEE Electronic Library (IEL)
subjects Algorithms
Databases, Factual - classification
Databases, Factual - standards
Distortion measurement
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - standards
Image segmentation
Object segmentation
Objective Measure
Onions
Semantics
Subjective Evaluation
Visual databases
Visual Quality
Visualization
title Visual Quality Evaluation of Image Object Segmentation: Subjective Assessment and Objective Measure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A48%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20Quality%20Evaluation%20of%20Image%20Object%20Segmentation:%20Subjective%20Assessment%20and%20Objective%20Measure&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Ran%20Shi&rft.date=2015-12&rft.volume=24&rft.issue=12&rft.spage=5033&rft.epage=5045&rft.pages=5033-5045&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2015.2473099&rft_dat=%3Cproquest_RIE%3E1718078381%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1729175401&rft_id=info:pmid/26316130&rft_ieee_id=7222418&rfr_iscdi=true