Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases

Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-10, Vol.112 (41), p.12693-12698
Hauptverfasser: Lohman, Jeremy R., Ma, Ming, Osipiuk, Jerzy, Nocek, Boguslaw, Kim, Youngchang, Chang, Changsoo, Cuff, Marianne, Mack, Jamey, Bigelow, Lance, Li, Hui, Endres, Michael, Babnigg, Gyorgy, Joachimiak, Andrzej, Phillips, George N., Shen, Ben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12698
container_issue 41
container_start_page 12693
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Lohman, Jeremy R.
Ma, Ming
Osipiuk, Jerzy
Nocek, Boguslaw
Kim, Youngchang
Chang, Changsoo
Cuff, Marianne
Mack, Jamey
Bigelow, Lance
Li, Hui
Endres, Michael
Babnigg, Gyorgy
Joachimiak, Andrzej
Phillips, George N.
Shen, Ben
description Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.
doi_str_mv 10.1073/pnas.1515460112
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1726484262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26465482</jstor_id><sourcerecordid>26465482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-142b3660b14b7693c6c17023dc8809ade6ecdbf96226a8cbc37c0401467186283</originalsourceid><addsrcrecordid>eNqFks9u1DAQxi0EokvhzAlkwYVLWo_jTJxLpariT6VKHChny3G8bJasHWyn0t76IPByfRIc7XYpXDjZI__ms76Zj5CXwE6A1eXp6HQ8gQoqgQyAPyILYA0UKBr2mCwY43UhBRdH5FmMa8ZYU0n2lBxxFJxJxAUxX1KYTJqCHqh2HbU3fphS750OWxrsoOd7XPVjpH5J725_nl8Xg43x7vYXTdvR0ks6-mH73aa-szRuXVrpaGmu_X0Rn5MnSz1E-2J_HpOvH95fX3wqrj5_vLw4vypM1YhUgOBtichaEG2NTWnQQM142RkpWaM7i9Z07bJBzlFL05qyNkwwEFiDRC7LY3K20x2ndmM7Y13KttQY-k12o7zu1d8vrl-pb_5GCQRAwCzwZifgY-pVNH2yZmW8c9YkBVxIJqoMvdv_EvyPycakNn00dhi0s36KCmqBUjYsr-f_KOcCZIOQ0bf_oGs_BZfHNVMo8haRZ-p0R5ngYwx2eTAHTM2BUHMg1J9A5I7XD2dy4O8TkAG6B-bOgxxwJSB7znvIyKsdso7Jh4cSWAnJy99GBse4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1726484262</pqid></control><display><type>article</type><title>Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lohman, Jeremy R. ; Ma, Ming ; Osipiuk, Jerzy ; Nocek, Boguslaw ; Kim, Youngchang ; Chang, Changsoo ; Cuff, Marianne ; Mack, Jamey ; Bigelow, Lance ; Li, Hui ; Endres, Michael ; Babnigg, Gyorgy ; Joachimiak, Andrzej ; Phillips, George N. ; Shen, Ben</creator><creatorcontrib>Lohman, Jeremy R. ; Ma, Ming ; Osipiuk, Jerzy ; Nocek, Boguslaw ; Kim, Youngchang ; Chang, Changsoo ; Cuff, Marianne ; Mack, Jamey ; Bigelow, Lance ; Li, Hui ; Endres, Michael ; Babnigg, Gyorgy ; Joachimiak, Andrzej ; Phillips, George N. ; Shen, Ben ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1515460112</identifier><identifier>PMID: 26420866</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; BASIC BIOLOGICAL SCIENCES ; Biological Sciences ; biosynthesis ; Crystallography, X-Ray ; Enzymes ; Evolution ; Evolution, Molecular ; iso-migrastatin ; leinamycin ; Molecules ; oxazolomycin ; Phylogenetics ; Polyketide Synthases - chemistry ; Polyketide Synthases - genetics ; Protein Structure, Tertiary ; Proteins ; secondary metabolism ; Substrate Specificity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (41), p.12693-12698</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 13, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-142b3660b14b7693c6c17023dc8809ade6ecdbf96226a8cbc37c0401467186283</citedby><cites>FETCH-LOGICAL-c594t-142b3660b14b7693c6c17023dc8809ade6ecdbf96226a8cbc37c0401467186283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/41.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26465482$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26465482$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26420866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1248045$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lohman, Jeremy R.</creatorcontrib><creatorcontrib>Ma, Ming</creatorcontrib><creatorcontrib>Osipiuk, Jerzy</creatorcontrib><creatorcontrib>Nocek, Boguslaw</creatorcontrib><creatorcontrib>Kim, Youngchang</creatorcontrib><creatorcontrib>Chang, Changsoo</creatorcontrib><creatorcontrib>Cuff, Marianne</creatorcontrib><creatorcontrib>Mack, Jamey</creatorcontrib><creatorcontrib>Bigelow, Lance</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Endres, Michael</creatorcontrib><creatorcontrib>Babnigg, Gyorgy</creatorcontrib><creatorcontrib>Joachimiak, Andrzej</creatorcontrib><creatorcontrib>Phillips, George N.</creatorcontrib><creatorcontrib>Shen, Ben</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.</description><subject>Amino acids</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological Sciences</subject><subject>biosynthesis</subject><subject>Crystallography, X-Ray</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>iso-migrastatin</subject><subject>leinamycin</subject><subject>Molecules</subject><subject>oxazolomycin</subject><subject>Phylogenetics</subject><subject>Polyketide Synthases - chemistry</subject><subject>Polyketide Synthases - genetics</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>secondary metabolism</subject><subject>Substrate Specificity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks9u1DAQxi0EokvhzAlkwYVLWo_jTJxLpariT6VKHChny3G8bJasHWyn0t76IPByfRIc7XYpXDjZI__ms76Zj5CXwE6A1eXp6HQ8gQoqgQyAPyILYA0UKBr2mCwY43UhBRdH5FmMa8ZYU0n2lBxxFJxJxAUxX1KYTJqCHqh2HbU3fphS750OWxrsoOd7XPVjpH5J725_nl8Xg43x7vYXTdvR0ks6-mH73aa-szRuXVrpaGmu_X0Rn5MnSz1E-2J_HpOvH95fX3wqrj5_vLw4vypM1YhUgOBtichaEG2NTWnQQM142RkpWaM7i9Z07bJBzlFL05qyNkwwEFiDRC7LY3K20x2ndmM7Y13KttQY-k12o7zu1d8vrl-pb_5GCQRAwCzwZifgY-pVNH2yZmW8c9YkBVxIJqoMvdv_EvyPycakNn00dhi0s36KCmqBUjYsr-f_KOcCZIOQ0bf_oGs_BZfHNVMo8haRZ-p0R5ngYwx2eTAHTM2BUHMg1J9A5I7XD2dy4O8TkAG6B-bOgxxwJSB7znvIyKsdso7Jh4cSWAnJy99GBse4</recordid><startdate>20151013</startdate><enddate>20151013</enddate><creator>Lohman, Jeremy R.</creator><creator>Ma, Ming</creator><creator>Osipiuk, Jerzy</creator><creator>Nocek, Boguslaw</creator><creator>Kim, Youngchang</creator><creator>Chang, Changsoo</creator><creator>Cuff, Marianne</creator><creator>Mack, Jamey</creator><creator>Bigelow, Lance</creator><creator>Li, Hui</creator><creator>Endres, Michael</creator><creator>Babnigg, Gyorgy</creator><creator>Joachimiak, Andrzej</creator><creator>Phillips, George N.</creator><creator>Shen, Ben</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20151013</creationdate><title>Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases</title><author>Lohman, Jeremy R. ; Ma, Ming ; Osipiuk, Jerzy ; Nocek, Boguslaw ; Kim, Youngchang ; Chang, Changsoo ; Cuff, Marianne ; Mack, Jamey ; Bigelow, Lance ; Li, Hui ; Endres, Michael ; Babnigg, Gyorgy ; Joachimiak, Andrzej ; Phillips, George N. ; Shen, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-142b3660b14b7693c6c17023dc8809ade6ecdbf96226a8cbc37c0401467186283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino acids</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological Sciences</topic><topic>biosynthesis</topic><topic>Crystallography, X-Ray</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>iso-migrastatin</topic><topic>leinamycin</topic><topic>Molecules</topic><topic>oxazolomycin</topic><topic>Phylogenetics</topic><topic>Polyketide Synthases - chemistry</topic><topic>Polyketide Synthases - genetics</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>secondary metabolism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lohman, Jeremy R.</creatorcontrib><creatorcontrib>Ma, Ming</creatorcontrib><creatorcontrib>Osipiuk, Jerzy</creatorcontrib><creatorcontrib>Nocek, Boguslaw</creatorcontrib><creatorcontrib>Kim, Youngchang</creatorcontrib><creatorcontrib>Chang, Changsoo</creatorcontrib><creatorcontrib>Cuff, Marianne</creatorcontrib><creatorcontrib>Mack, Jamey</creatorcontrib><creatorcontrib>Bigelow, Lance</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Endres, Michael</creatorcontrib><creatorcontrib>Babnigg, Gyorgy</creatorcontrib><creatorcontrib>Joachimiak, Andrzej</creatorcontrib><creatorcontrib>Phillips, George N.</creatorcontrib><creatorcontrib>Shen, Ben</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lohman, Jeremy R.</au><au>Ma, Ming</au><au>Osipiuk, Jerzy</au><au>Nocek, Boguslaw</au><au>Kim, Youngchang</au><au>Chang, Changsoo</au><au>Cuff, Marianne</au><au>Mack, Jamey</au><au>Bigelow, Lance</au><au>Li, Hui</au><au>Endres, Michael</au><au>Babnigg, Gyorgy</au><au>Joachimiak, Andrzej</au><au>Phillips, George N.</au><au>Shen, Ben</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-10-13</date><risdate>2015</risdate><volume>112</volume><issue>41</issue><spage>12693</spage><epage>12698</epage><pages>12693-12698</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26420866</pmid><doi>10.1073/pnas.1515460112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-10, Vol.112 (41), p.12693-12698
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1726484262
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino acids
BASIC BIOLOGICAL SCIENCES
Biological Sciences
biosynthesis
Crystallography, X-Ray
Enzymes
Evolution
Evolution, Molecular
iso-migrastatin
leinamycin
Molecules
oxazolomycin
Phylogenetics
Polyketide Synthases - chemistry
Polyketide Synthases - genetics
Protein Structure, Tertiary
Proteins
secondary metabolism
Substrate Specificity
title Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20evolutionary%20relationships%20of%20%E2%80%9CAT-less%E2%80%9D%20type%20I%20polyketide%20synthase%20ketosynthases&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lohman,%20Jeremy%20R.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2015-10-13&rft.volume=112&rft.issue=41&rft.spage=12693&rft.epage=12698&rft.pages=12693-12698&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1515460112&rft_dat=%3Cjstor_proqu%3E26465482%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1726484262&rft_id=info:pmid/26420866&rft_jstor_id=26465482&rfr_iscdi=true