Nanomembrane Canister Architectures for the Visualization and Filtration of Oxyanion Toxins with One-Step Processing

Nanomembrane canister‐like architectures were fabricated by using hexagonal mesocylinder‐shaped aluminosilica nanotubes (MNTs)–porous anodic alumina (PAA) hybrid nanochannels. The engineering pattern of the MNTs inside a 60 μm‐long membrane channel enabled the creation of unique canister‐like channe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry, an Asian journal an Asian journal, 2015-11, Vol.10 (11), p.2467-2478
Hauptverfasser: Aboelmagd, Ahmed, El-Safty, Sherif A., Shenashen, Mohamed A., Elshehy, Emad A., Khairy, Mohamed, Sakaic, Masaru, Yamaguchi, Hitoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2478
container_issue 11
container_start_page 2467
container_title Chemistry, an Asian journal
container_volume 10
creator Aboelmagd, Ahmed
El-Safty, Sherif A.
Shenashen, Mohamed A.
Elshehy, Emad A.
Khairy, Mohamed
Sakaic, Masaru
Yamaguchi, Hitoshi
description Nanomembrane canister‐like architectures were fabricated by using hexagonal mesocylinder‐shaped aluminosilica nanotubes (MNTs)–porous anodic alumina (PAA) hybrid nanochannels. The engineering pattern of the MNTs inside a 60 μm‐long membrane channel enabled the creation of unique canister‐like channel necks and cavities. The open‐tubular canister architecture design provides controllable, reproducible, and one‐step processing patterns of visual detection and rejection/permeation of oxyanion toxins such as selenite (SeO32−) in aquatic environments (i.e., in ground and river water sources) in the Ibaraki Prefecture of Japan. The decoration of organic ligand moieties such as omega chrome black blue (OCG) into inorganic Al2O3@tubular SiO2/Al2O3 canister membrane channel cavities led to the fabrication of an optical nanomembrane sensor (ONS). The OCG ligand was not leached from the canister as observed in washing, sensing, and recovery assays of selenite anions in solution, which enabled its multiple reuse. The ONS makes a variety of alternate processing analyses of selective quantification, visual detection, rejection/permeation, and recovery of toxic selenite quick and simple without using complex instrumentation. Under optimal conditions, the ONS canister exhibited a high selectivity toward selenite anions relative to other ions and a low‐level detection limit of 0.0093 μm. Real analytical data showed that approximately 96 % of SeO32− anions can be recovered from aquatic and wastewater samples. The ONS canister holds potential for field recovery applications of toxic selenite anions from water. Selective for selenite: Controllable, reproducible, and one‐step processing patterns of the selective quantification, visual detection, rejection/permeation, and recovery of oxyanion toxins such as selenite anions in aquatic environments were conducted in open‐canister architectures (see scheme). The hierarchical nanomembrane canister enabled the selective rejection of the target selenite and produced water free from the toxic selenite anions.
doi_str_mv 10.1002/asia.201500565
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1724204616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3842092921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5185-a90efd713ea65eac731713de433c9fb557de63e6a21880a9edf6ed4f612a2f233</originalsourceid><addsrcrecordid>eNqFkUtP4zAURi00iNfMluXI0qxT_IidZFmVoSBVLQLmsbPc5Jqaae2O7YiWX0-qQMWOle-VzncsfRehc0oGlBB2oaPVA0aoIERIcYBOaClplhf075f9zMpjdBrjU4cwUpVH6JhJWpS0zE9QmmrnV7CaB-0Aj7SzMUHAw1AvbII6tQEiNj7gtAD828ZWL-2LTtY7rF2Dr-wyhX71Bs82207QzQ9-Y13EzzYt8MxBdp9gjW-DryFG6x6_okOjlxG-vb1n6NfVz4fRdTaZjW9Gw0lWC1qKTFcETFNQDloK0HXBabc0kHNeV2YuRNGA5CA1o2VJdAWNkdDkRlKmmWGcn6EfvXcd_P8WYlJPvg2u-1LRguWM5JLKjhr0VB18jAGMWge70mGrKFG7ktWuZLUvuQt8f9O28xU0e_y91Q6oeuDZLmH7iU4N72-GH-VZn90dYrPP6vBPyYIXQv2ZjtX07vJSTG6JGvNXwIGaDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1724204616</pqid></control><display><type>article</type><title>Nanomembrane Canister Architectures for the Visualization and Filtration of Oxyanion Toxins with One-Step Processing</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Aboelmagd, Ahmed ; El-Safty, Sherif A. ; Shenashen, Mohamed A. ; Elshehy, Emad A. ; Khairy, Mohamed ; Sakaic, Masaru ; Yamaguchi, Hitoshi</creator><creatorcontrib>Aboelmagd, Ahmed ; El-Safty, Sherif A. ; Shenashen, Mohamed A. ; Elshehy, Emad A. ; Khairy, Mohamed ; Sakaic, Masaru ; Yamaguchi, Hitoshi</creatorcontrib><description>Nanomembrane canister‐like architectures were fabricated by using hexagonal mesocylinder‐shaped aluminosilica nanotubes (MNTs)–porous anodic alumina (PAA) hybrid nanochannels. The engineering pattern of the MNTs inside a 60 μm‐long membrane channel enabled the creation of unique canister‐like channel necks and cavities. The open‐tubular canister architecture design provides controllable, reproducible, and one‐step processing patterns of visual detection and rejection/permeation of oxyanion toxins such as selenite (SeO32−) in aquatic environments (i.e., in ground and river water sources) in the Ibaraki Prefecture of Japan. The decoration of organic ligand moieties such as omega chrome black blue (OCG) into inorganic Al2O3@tubular SiO2/Al2O3 canister membrane channel cavities led to the fabrication of an optical nanomembrane sensor (ONS). The OCG ligand was not leached from the canister as observed in washing, sensing, and recovery assays of selenite anions in solution, which enabled its multiple reuse. The ONS makes a variety of alternate processing analyses of selective quantification, visual detection, rejection/permeation, and recovery of toxic selenite quick and simple without using complex instrumentation. Under optimal conditions, the ONS canister exhibited a high selectivity toward selenite anions relative to other ions and a low‐level detection limit of 0.0093 μm. Real analytical data showed that approximately 96 % of SeO32− anions can be recovered from aquatic and wastewater samples. The ONS canister holds potential for field recovery applications of toxic selenite anions from water. Selective for selenite: Controllable, reproducible, and one‐step processing patterns of the selective quantification, visual detection, rejection/permeation, and recovery of oxyanion toxins such as selenite anions in aquatic environments were conducted in open‐canister architectures (see scheme). The hierarchical nanomembrane canister enabled the selective rejection of the target selenite and produced water free from the toxic selenite anions.</description><identifier>ISSN: 1861-4728</identifier><identifier>EISSN: 1861-471X</identifier><identifier>DOI: 10.1002/asia.201500565</identifier><identifier>PMID: 26178184</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Aluminum Oxide - chemistry ; anions ; Anions - chemistry ; Chemistry ; Hydrogen-Ion Concentration ; Ligands ; membranes ; nanotubes ; Nanotubes - chemistry ; Selenious Acid - analysis ; sensors ; Silicon Dioxide - chemistry ; Spectrophotometry, Ultraviolet ; toxicology ; Water Pollutants, Chemical - analysis</subject><ispartof>Chemistry, an Asian journal, 2015-11, Vol.10 (11), p.2467-2478</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5185-a90efd713ea65eac731713de433c9fb557de63e6a21880a9edf6ed4f612a2f233</citedby><cites>FETCH-LOGICAL-c5185-a90efd713ea65eac731713de433c9fb557de63e6a21880a9edf6ed4f612a2f233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasia.201500565$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasia.201500565$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26178184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aboelmagd, Ahmed</creatorcontrib><creatorcontrib>El-Safty, Sherif A.</creatorcontrib><creatorcontrib>Shenashen, Mohamed A.</creatorcontrib><creatorcontrib>Elshehy, Emad A.</creatorcontrib><creatorcontrib>Khairy, Mohamed</creatorcontrib><creatorcontrib>Sakaic, Masaru</creatorcontrib><creatorcontrib>Yamaguchi, Hitoshi</creatorcontrib><title>Nanomembrane Canister Architectures for the Visualization and Filtration of Oxyanion Toxins with One-Step Processing</title><title>Chemistry, an Asian journal</title><addtitle>Chem. Asian J</addtitle><description>Nanomembrane canister‐like architectures were fabricated by using hexagonal mesocylinder‐shaped aluminosilica nanotubes (MNTs)–porous anodic alumina (PAA) hybrid nanochannels. The engineering pattern of the MNTs inside a 60 μm‐long membrane channel enabled the creation of unique canister‐like channel necks and cavities. The open‐tubular canister architecture design provides controllable, reproducible, and one‐step processing patterns of visual detection and rejection/permeation of oxyanion toxins such as selenite (SeO32−) in aquatic environments (i.e., in ground and river water sources) in the Ibaraki Prefecture of Japan. The decoration of organic ligand moieties such as omega chrome black blue (OCG) into inorganic Al2O3@tubular SiO2/Al2O3 canister membrane channel cavities led to the fabrication of an optical nanomembrane sensor (ONS). The OCG ligand was not leached from the canister as observed in washing, sensing, and recovery assays of selenite anions in solution, which enabled its multiple reuse. The ONS makes a variety of alternate processing analyses of selective quantification, visual detection, rejection/permeation, and recovery of toxic selenite quick and simple without using complex instrumentation. Under optimal conditions, the ONS canister exhibited a high selectivity toward selenite anions relative to other ions and a low‐level detection limit of 0.0093 μm. Real analytical data showed that approximately 96 % of SeO32− anions can be recovered from aquatic and wastewater samples. The ONS canister holds potential for field recovery applications of toxic selenite anions from water. Selective for selenite: Controllable, reproducible, and one‐step processing patterns of the selective quantification, visual detection, rejection/permeation, and recovery of oxyanion toxins such as selenite anions in aquatic environments were conducted in open‐canister architectures (see scheme). The hierarchical nanomembrane canister enabled the selective rejection of the target selenite and produced water free from the toxic selenite anions.</description><subject>Aluminum Oxide - chemistry</subject><subject>anions</subject><subject>Anions - chemistry</subject><subject>Chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ligands</subject><subject>membranes</subject><subject>nanotubes</subject><subject>Nanotubes - chemistry</subject><subject>Selenious Acid - analysis</subject><subject>sensors</subject><subject>Silicon Dioxide - chemistry</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>toxicology</subject><subject>Water Pollutants, Chemical - analysis</subject><issn>1861-4728</issn><issn>1861-471X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtP4zAURi00iNfMluXI0qxT_IidZFmVoSBVLQLmsbPc5Jqaae2O7YiWX0-qQMWOle-VzncsfRehc0oGlBB2oaPVA0aoIERIcYBOaClplhf075f9zMpjdBrjU4cwUpVH6JhJWpS0zE9QmmrnV7CaB-0Aj7SzMUHAw1AvbII6tQEiNj7gtAD828ZWL-2LTtY7rF2Dr-wyhX71Bs82207QzQ9-Y13EzzYt8MxBdp9gjW-DryFG6x6_okOjlxG-vb1n6NfVz4fRdTaZjW9Gw0lWC1qKTFcETFNQDloK0HXBabc0kHNeV2YuRNGA5CA1o2VJdAWNkdDkRlKmmWGcn6EfvXcd_P8WYlJPvg2u-1LRguWM5JLKjhr0VB18jAGMWge70mGrKFG7ktWuZLUvuQt8f9O28xU0e_y91Q6oeuDZLmH7iU4N72-GH-VZn90dYrPP6vBPyYIXQv2ZjtX07vJSTG6JGvNXwIGaDw</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Aboelmagd, Ahmed</creator><creator>El-Safty, Sherif A.</creator><creator>Shenashen, Mohamed A.</creator><creator>Elshehy, Emad A.</creator><creator>Khairy, Mohamed</creator><creator>Sakaic, Masaru</creator><creator>Yamaguchi, Hitoshi</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>201511</creationdate><title>Nanomembrane Canister Architectures for the Visualization and Filtration of Oxyanion Toxins with One-Step Processing</title><author>Aboelmagd, Ahmed ; El-Safty, Sherif A. ; Shenashen, Mohamed A. ; Elshehy, Emad A. ; Khairy, Mohamed ; Sakaic, Masaru ; Yamaguchi, Hitoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5185-a90efd713ea65eac731713de433c9fb557de63e6a21880a9edf6ed4f612a2f233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aluminum Oxide - chemistry</topic><topic>anions</topic><topic>Anions - chemistry</topic><topic>Chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ligands</topic><topic>membranes</topic><topic>nanotubes</topic><topic>Nanotubes - chemistry</topic><topic>Selenious Acid - analysis</topic><topic>sensors</topic><topic>Silicon Dioxide - chemistry</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>toxicology</topic><topic>Water Pollutants, Chemical - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aboelmagd, Ahmed</creatorcontrib><creatorcontrib>El-Safty, Sherif A.</creatorcontrib><creatorcontrib>Shenashen, Mohamed A.</creatorcontrib><creatorcontrib>Elshehy, Emad A.</creatorcontrib><creatorcontrib>Khairy, Mohamed</creatorcontrib><creatorcontrib>Sakaic, Masaru</creatorcontrib><creatorcontrib>Yamaguchi, Hitoshi</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Chemistry, an Asian journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aboelmagd, Ahmed</au><au>El-Safty, Sherif A.</au><au>Shenashen, Mohamed A.</au><au>Elshehy, Emad A.</au><au>Khairy, Mohamed</au><au>Sakaic, Masaru</au><au>Yamaguchi, Hitoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanomembrane Canister Architectures for the Visualization and Filtration of Oxyanion Toxins with One-Step Processing</atitle><jtitle>Chemistry, an Asian journal</jtitle><addtitle>Chem. Asian J</addtitle><date>2015-11</date><risdate>2015</risdate><volume>10</volume><issue>11</issue><spage>2467</spage><epage>2478</epage><pages>2467-2478</pages><issn>1861-4728</issn><eissn>1861-471X</eissn><abstract>Nanomembrane canister‐like architectures were fabricated by using hexagonal mesocylinder‐shaped aluminosilica nanotubes (MNTs)–porous anodic alumina (PAA) hybrid nanochannels. The engineering pattern of the MNTs inside a 60 μm‐long membrane channel enabled the creation of unique canister‐like channel necks and cavities. The open‐tubular canister architecture design provides controllable, reproducible, and one‐step processing patterns of visual detection and rejection/permeation of oxyanion toxins such as selenite (SeO32−) in aquatic environments (i.e., in ground and river water sources) in the Ibaraki Prefecture of Japan. The decoration of organic ligand moieties such as omega chrome black blue (OCG) into inorganic Al2O3@tubular SiO2/Al2O3 canister membrane channel cavities led to the fabrication of an optical nanomembrane sensor (ONS). The OCG ligand was not leached from the canister as observed in washing, sensing, and recovery assays of selenite anions in solution, which enabled its multiple reuse. The ONS makes a variety of alternate processing analyses of selective quantification, visual detection, rejection/permeation, and recovery of toxic selenite quick and simple without using complex instrumentation. Under optimal conditions, the ONS canister exhibited a high selectivity toward selenite anions relative to other ions and a low‐level detection limit of 0.0093 μm. Real analytical data showed that approximately 96 % of SeO32− anions can be recovered from aquatic and wastewater samples. The ONS canister holds potential for field recovery applications of toxic selenite anions from water. Selective for selenite: Controllable, reproducible, and one‐step processing patterns of the selective quantification, visual detection, rejection/permeation, and recovery of oxyanion toxins such as selenite anions in aquatic environments were conducted in open‐canister architectures (see scheme). The hierarchical nanomembrane canister enabled the selective rejection of the target selenite and produced water free from the toxic selenite anions.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>26178184</pmid><doi>10.1002/asia.201500565</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1861-4728
ispartof Chemistry, an Asian journal, 2015-11, Vol.10 (11), p.2467-2478
issn 1861-4728
1861-471X
language eng
recordid cdi_proquest_journals_1724204616
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Aluminum Oxide - chemistry
anions
Anions - chemistry
Chemistry
Hydrogen-Ion Concentration
Ligands
membranes
nanotubes
Nanotubes - chemistry
Selenious Acid - analysis
sensors
Silicon Dioxide - chemistry
Spectrophotometry, Ultraviolet
toxicology
Water Pollutants, Chemical - analysis
title Nanomembrane Canister Architectures for the Visualization and Filtration of Oxyanion Toxins with One-Step Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanomembrane%20Canister%20Architectures%20for%20the%20Visualization%20and%20Filtration%20of%20Oxyanion%20Toxins%20with%20One-Step%20Processing&rft.jtitle=Chemistry,%20an%20Asian%20journal&rft.au=Aboelmagd,%20Ahmed&rft.date=2015-11&rft.volume=10&rft.issue=11&rft.spage=2467&rft.epage=2478&rft.pages=2467-2478&rft.issn=1861-4728&rft.eissn=1861-471X&rft_id=info:doi/10.1002/asia.201500565&rft_dat=%3Cproquest_cross%3E3842092921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1724204616&rft_id=info:pmid/26178184&rfr_iscdi=true