Painlevé III Asymptotics of Hankel Determinants for a Perturbed Jacobi Weight

We study the Hankel determinants associated with the weight w(x;t)=(1−x2)β(t2−x2)αh(x),x∈(−1,1),where β>−1, α+β>−1, t>1, h(x) is analytic in a domain containing [ − 1, 1] and h(x)>0 for x∈[−1,1]. In this paper, based on the Deift–Zhou nonlinear steepest descent analysis, we study the dou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in applied mathematics (Cambridge) 2015-11, Vol.135 (4), p.347-376
Hauptverfasser: Zeng, Zhao-Yun, Xu, Shuai-Xia, Zhao, Yu-Qiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 376
container_issue 4
container_start_page 347
container_title Studies in applied mathematics (Cambridge)
container_volume 135
creator Zeng, Zhao-Yun
Xu, Shuai-Xia
Zhao, Yu-Qiu
description We study the Hankel determinants associated with the weight w(x;t)=(1−x2)β(t2−x2)αh(x),x∈(−1,1),where β>−1, α+β>−1, t>1, h(x) is analytic in a domain containing [ − 1, 1] and h(x)>0 for x∈[−1,1]. In this paper, based on the Deift–Zhou nonlinear steepest descent analysis, we study the double scaling limit of the Hankel determinants as n→∞ and t→1. We obtain the asymptotic approximations of the Hankel determinants, evaluated in terms of the Jimbo–Miwa–Okamoto σ‐function for the Painlevé III equation. The asymptotics of the leading coefficients and the recurrence coefficients for the perturbed Jacobi polynomials are also obtained.
doi_str_mv 10.1111/sapm.12090
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1722812071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3839831721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3750-ea8be15a6db7ea8e9b057cad086be4bc956b9d39441f56153bf470340d36f1013</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqWw4QSW2CGljJM4rpcVjzaolEo8urTsxAG3eWGnQI_EObgYKQGWzGZm8f0zmg-hYwID0taZk3UxID5w2EE9EkbM45TDLuoB-L7nUz_aRwfOLQGAMAo9NJtLU-b69fMDx3GMR25T1E3VmMThKsMTWa50ji90o21hSlk2DmeVxRLPtW3WVukUX8ukUgYvtHl6bg7RXiZzp49-eh89XF3en0-86e04Ph9NvSRoz3paDpUmVEapYu2suQLKEpnCMFI6VAmnkeJpwMOQZDQiNFBZyCAIIQ2ijAAJ-uik21vb6mWtXSOW1dqW7UlBmO8PWwVsS512VGIr56zORG1NIe1GEBBbX2LrS3z7amHSwW8m15t_SHE3mt_8ZrwuY1yj3_8y0q5ExNpPxWI2Fi0cTBl_FDT4AiGWe_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722812071</pqid></control><display><type>article</type><title>Painlevé III Asymptotics of Hankel Determinants for a Perturbed Jacobi Weight</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Zeng, Zhao-Yun ; Xu, Shuai-Xia ; Zhao, Yu-Qiu</creator><creatorcontrib>Zeng, Zhao-Yun ; Xu, Shuai-Xia ; Zhao, Yu-Qiu</creatorcontrib><description>We study the Hankel determinants associated with the weight w(x;t)=(1−x2)β(t2−x2)αh(x),x∈(−1,1),where β&gt;−1, α+β&gt;−1, t&gt;1, h(x) is analytic in a domain containing [ − 1, 1] and h(x)&gt;0 for x∈[−1,1]. In this paper, based on the Deift–Zhou nonlinear steepest descent analysis, we study the double scaling limit of the Hankel determinants as n→∞ and t→1. We obtain the asymptotic approximations of the Hankel determinants, evaluated in terms of the Jimbo–Miwa–Okamoto σ‐function for the Painlevé III equation. The asymptotics of the leading coefficients and the recurrence coefficients for the perturbed Jacobi polynomials are also obtained.</description><identifier>ISSN: 0022-2526</identifier><identifier>EISSN: 1467-9590</identifier><identifier>DOI: 10.1111/sapm.12090</identifier><language>eng</language><publisher>Cambridge: Blackwell Publishing Ltd</publisher><subject>Applied mathematics ; Mathematical models ; Polynomials ; Studies</subject><ispartof>Studies in applied mathematics (Cambridge), 2015-11, Vol.135 (4), p.347-376</ispartof><rights>2015 Wiley Periodicals, Inc., A Wiley Company</rights><rights>2015 Massachusetts Institute of Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3750-ea8be15a6db7ea8e9b057cad086be4bc956b9d39441f56153bf470340d36f1013</citedby><cites>FETCH-LOGICAL-c3750-ea8be15a6db7ea8e9b057cad086be4bc956b9d39441f56153bf470340d36f1013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsapm.12090$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsapm.12090$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zeng, Zhao-Yun</creatorcontrib><creatorcontrib>Xu, Shuai-Xia</creatorcontrib><creatorcontrib>Zhao, Yu-Qiu</creatorcontrib><title>Painlevé III Asymptotics of Hankel Determinants for a Perturbed Jacobi Weight</title><title>Studies in applied mathematics (Cambridge)</title><addtitle>Studies in Applied Mathematics</addtitle><description>We study the Hankel determinants associated with the weight w(x;t)=(1−x2)β(t2−x2)αh(x),x∈(−1,1),where β&gt;−1, α+β&gt;−1, t&gt;1, h(x) is analytic in a domain containing [ − 1, 1] and h(x)&gt;0 for x∈[−1,1]. In this paper, based on the Deift–Zhou nonlinear steepest descent analysis, we study the double scaling limit of the Hankel determinants as n→∞ and t→1. We obtain the asymptotic approximations of the Hankel determinants, evaluated in terms of the Jimbo–Miwa–Okamoto σ‐function for the Painlevé III equation. The asymptotics of the leading coefficients and the recurrence coefficients for the perturbed Jacobi polynomials are also obtained.</description><subject>Applied mathematics</subject><subject>Mathematical models</subject><subject>Polynomials</subject><subject>Studies</subject><issn>0022-2526</issn><issn>1467-9590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqWw4QSW2CGljJM4rpcVjzaolEo8urTsxAG3eWGnQI_EObgYKQGWzGZm8f0zmg-hYwID0taZk3UxID5w2EE9EkbM45TDLuoB-L7nUz_aRwfOLQGAMAo9NJtLU-b69fMDx3GMR25T1E3VmMThKsMTWa50ji90o21hSlk2DmeVxRLPtW3WVukUX8ukUgYvtHl6bg7RXiZzp49-eh89XF3en0-86e04Ph9NvSRoz3paDpUmVEapYu2suQLKEpnCMFI6VAmnkeJpwMOQZDQiNFBZyCAIIQ2ijAAJ-uik21vb6mWtXSOW1dqW7UlBmO8PWwVsS512VGIr56zORG1NIe1GEBBbX2LrS3z7amHSwW8m15t_SHE3mt_8ZrwuY1yj3_8y0q5ExNpPxWI2Fi0cTBl_FDT4AiGWe_Q</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Zeng, Zhao-Yun</creator><creator>Xu, Shuai-Xia</creator><creator>Zhao, Yu-Qiu</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201511</creationdate><title>Painlevé III Asymptotics of Hankel Determinants for a Perturbed Jacobi Weight</title><author>Zeng, Zhao-Yun ; Xu, Shuai-Xia ; Zhao, Yu-Qiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3750-ea8be15a6db7ea8e9b057cad086be4bc956b9d39441f56153bf470340d36f1013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied mathematics</topic><topic>Mathematical models</topic><topic>Polynomials</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Zhao-Yun</creatorcontrib><creatorcontrib>Xu, Shuai-Xia</creatorcontrib><creatorcontrib>Zhao, Yu-Qiu</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Studies in applied mathematics (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Zhao-Yun</au><au>Xu, Shuai-Xia</au><au>Zhao, Yu-Qiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Painlevé III Asymptotics of Hankel Determinants for a Perturbed Jacobi Weight</atitle><jtitle>Studies in applied mathematics (Cambridge)</jtitle><addtitle>Studies in Applied Mathematics</addtitle><date>2015-11</date><risdate>2015</risdate><volume>135</volume><issue>4</issue><spage>347</spage><epage>376</epage><pages>347-376</pages><issn>0022-2526</issn><eissn>1467-9590</eissn><abstract>We study the Hankel determinants associated with the weight w(x;t)=(1−x2)β(t2−x2)αh(x),x∈(−1,1),where β&gt;−1, α+β&gt;−1, t&gt;1, h(x) is analytic in a domain containing [ − 1, 1] and h(x)&gt;0 for x∈[−1,1]. In this paper, based on the Deift–Zhou nonlinear steepest descent analysis, we study the double scaling limit of the Hankel determinants as n→∞ and t→1. We obtain the asymptotic approximations of the Hankel determinants, evaluated in terms of the Jimbo–Miwa–Okamoto σ‐function for the Painlevé III equation. The asymptotics of the leading coefficients and the recurrence coefficients for the perturbed Jacobi polynomials are also obtained.</abstract><cop>Cambridge</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/sapm.12090</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2526
ispartof Studies in applied mathematics (Cambridge), 2015-11, Vol.135 (4), p.347-376
issn 0022-2526
1467-9590
language eng
recordid cdi_proquest_journals_1722812071
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Applied mathematics
Mathematical models
Polynomials
Studies
title Painlevé III Asymptotics of Hankel Determinants for a Perturbed Jacobi Weight
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T21%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Painlev%C3%A9%20III%20Asymptotics%20of%20Hankel%20Determinants%20for%20a%20Perturbed%20Jacobi%20Weight&rft.jtitle=Studies%20in%20applied%20mathematics%20(Cambridge)&rft.au=Zeng,%20Zhao-Yun&rft.date=2015-11&rft.volume=135&rft.issue=4&rft.spage=347&rft.epage=376&rft.pages=347-376&rft.issn=0022-2526&rft.eissn=1467-9590&rft_id=info:doi/10.1111/sapm.12090&rft_dat=%3Cproquest_cross%3E3839831721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1722812071&rft_id=info:pmid/&rfr_iscdi=true