Order batching in a pick-and-pass warehousing system with group genetic algorithm
An order batching policy determines how orders are combined to form batches. Previous studies on order batching policy focused primarily on classic manual warehouses, and its effect on pick-and-pass systems has rarely been discussed. Pick-and-pass systems, a commonly used warehousing installation fo...
Gespeichert in:
Veröffentlicht in: | Omega (Oxford) 2015-12, Vol.57, p.238-248 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 248 |
---|---|
container_issue | |
container_start_page | 238 |
container_title | Omega (Oxford) |
container_volume | 57 |
creator | Pan, Jason Chao-Hsien Shih, Po-Hsun Wu, Ming-Hung |
description | An order batching policy determines how orders are combined to form batches. Previous studies on order batching policy focused primarily on classic manual warehouses, and its effect on pick-and-pass systems has rarely been discussed. Pick-and-pass systems, a commonly used warehousing installation for small to medium-sized items, play a key role in managing a supply chain efficiently because the fast delivery of small and frequent inventory orders has become a crucial trading practice because of the rise of e-commerce and e-business. This paper proposes an order batching approach based on a group genetic algorithm to balance the workload of each picking zone and minimize the number of batches in a pick-and-pass system in an effort to improve system performance. A simulation model based on FlexSim is used to implement the proposed heuristic algorithm, and compare the throughput for different order batching policies. The results reveal that the proposed heuristic policy outperforms existing order batching policies in a pick-and-pass system.
•Order batching method is developed based on group genetic algorithm for a pick-and-pass system.•Balance of workloads among all pickers has a great impact on efficiency of pick-and-pass system.•Proposed heuristic policy improves the order picking efficiency in a pick-and-pass system. |
doi_str_mv | 10.1016/j.omega.2015.05.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1722457327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305048315001048</els_id><sourcerecordid>3838141521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-b73d6122bf6d34c443c4a18c98b922c00016e6d2bc0db42588846b7eb9316733</originalsourceid><addsrcrecordid>eNp9UMtKA0EQHETBGP0CLwOed-157M7k4EGCLwgEIfdhXtnMmn04szH49-4az0JBQ3dVV1EI3RLICZDyvs67xlc6p0CKHEYAP0MzIgXLCir4OZoBgyIDLtklukqpBgAigc3Q-zo6H7HRg92FtsKhxRr3wX5kunVZr1PCRx39rjuk6Zy-0-AbfAzDDlexO_S48q0fgsV6X3VxXDfX6GKr98nf_M052jw_bZav2Wr98rZ8XGWWMzpkRjBXEkrNtnSMW86Z5ZpIu5BmQamdApa-dNRYcIbTQkrJSyO8WTBSCsbm6O70to_d58GnQdXdIbajoyKCUl4IRsXIYieWjV1K0W9VH0Oj47cioKbqVK1-q1NTdQpGAB9VDyeVH_N_BR9VssG31rsQvR2U68K_-h_wPHet</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722457327</pqid></control><display><type>article</type><title>Order batching in a pick-and-pass warehousing system with group genetic algorithm</title><source>Elsevier ScienceDirect Journals</source><creator>Pan, Jason Chao-Hsien ; Shih, Po-Hsun ; Wu, Ming-Hung</creator><creatorcontrib>Pan, Jason Chao-Hsien ; Shih, Po-Hsun ; Wu, Ming-Hung</creatorcontrib><description>An order batching policy determines how orders are combined to form batches. Previous studies on order batching policy focused primarily on classic manual warehouses, and its effect on pick-and-pass systems has rarely been discussed. Pick-and-pass systems, a commonly used warehousing installation for small to medium-sized items, play a key role in managing a supply chain efficiently because the fast delivery of small and frequent inventory orders has become a crucial trading practice because of the rise of e-commerce and e-business. This paper proposes an order batching approach based on a group genetic algorithm to balance the workload of each picking zone and minimize the number of batches in a pick-and-pass system in an effort to improve system performance. A simulation model based on FlexSim is used to implement the proposed heuristic algorithm, and compare the throughput for different order batching policies. The results reveal that the proposed heuristic policy outperforms existing order batching policies in a pick-and-pass system.
•Order batching method is developed based on group genetic algorithm for a pick-and-pass system.•Balance of workloads among all pickers has a great impact on efficiency of pick-and-pass system.•Proposed heuristic policy improves the order picking efficiency in a pick-and-pass system.</description><identifier>ISSN: 0305-0483</identifier><identifier>EISSN: 1873-5274</identifier><identifier>DOI: 10.1016/j.omega.2015.05.004</identifier><identifier>CODEN: OMEGA6</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Electronic commerce ; Genetic algorithms ; Heuristic ; Order batching policy ; Order picking ; Pick-and-pass system ; Small & medium sized enterprises-SME ; Studies ; Supply chain management ; Warehouse management ; Warehousing</subject><ispartof>Omega (Oxford), 2015-12, Vol.57, p.238-248</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Dec 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-b73d6122bf6d34c443c4a18c98b922c00016e6d2bc0db42588846b7eb9316733</citedby><cites>FETCH-LOGICAL-c432t-b73d6122bf6d34c443c4a18c98b922c00016e6d2bc0db42588846b7eb9316733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0305048315001048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Pan, Jason Chao-Hsien</creatorcontrib><creatorcontrib>Shih, Po-Hsun</creatorcontrib><creatorcontrib>Wu, Ming-Hung</creatorcontrib><title>Order batching in a pick-and-pass warehousing system with group genetic algorithm</title><title>Omega (Oxford)</title><description>An order batching policy determines how orders are combined to form batches. Previous studies on order batching policy focused primarily on classic manual warehouses, and its effect on pick-and-pass systems has rarely been discussed. Pick-and-pass systems, a commonly used warehousing installation for small to medium-sized items, play a key role in managing a supply chain efficiently because the fast delivery of small and frequent inventory orders has become a crucial trading practice because of the rise of e-commerce and e-business. This paper proposes an order batching approach based on a group genetic algorithm to balance the workload of each picking zone and minimize the number of batches in a pick-and-pass system in an effort to improve system performance. A simulation model based on FlexSim is used to implement the proposed heuristic algorithm, and compare the throughput for different order batching policies. The results reveal that the proposed heuristic policy outperforms existing order batching policies in a pick-and-pass system.
•Order batching method is developed based on group genetic algorithm for a pick-and-pass system.•Balance of workloads among all pickers has a great impact on efficiency of pick-and-pass system.•Proposed heuristic policy improves the order picking efficiency in a pick-and-pass system.</description><subject>Electronic commerce</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Order batching policy</subject><subject>Order picking</subject><subject>Pick-and-pass system</subject><subject>Small & medium sized enterprises-SME</subject><subject>Studies</subject><subject>Supply chain management</subject><subject>Warehouse management</subject><subject>Warehousing</subject><issn>0305-0483</issn><issn>1873-5274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKA0EQHETBGP0CLwOed-157M7k4EGCLwgEIfdhXtnMmn04szH49-4az0JBQ3dVV1EI3RLICZDyvs67xlc6p0CKHEYAP0MzIgXLCir4OZoBgyIDLtklukqpBgAigc3Q-zo6H7HRg92FtsKhxRr3wX5kunVZr1PCRx39rjuk6Zy-0-AbfAzDDlexO_S48q0fgsV6X3VxXDfX6GKr98nf_M052jw_bZav2Wr98rZ8XGWWMzpkRjBXEkrNtnSMW86Z5ZpIu5BmQamdApa-dNRYcIbTQkrJSyO8WTBSCsbm6O70to_d58GnQdXdIbajoyKCUl4IRsXIYieWjV1K0W9VH0Oj47cioKbqVK1-q1NTdQpGAB9VDyeVH_N_BR9VssG31rsQvR2U68K_-h_wPHet</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Pan, Jason Chao-Hsien</creator><creator>Shih, Po-Hsun</creator><creator>Wu, Ming-Hung</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20151201</creationdate><title>Order batching in a pick-and-pass warehousing system with group genetic algorithm</title><author>Pan, Jason Chao-Hsien ; Shih, Po-Hsun ; Wu, Ming-Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-b73d6122bf6d34c443c4a18c98b922c00016e6d2bc0db42588846b7eb9316733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Electronic commerce</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Order batching policy</topic><topic>Order picking</topic><topic>Pick-and-pass system</topic><topic>Small & medium sized enterprises-SME</topic><topic>Studies</topic><topic>Supply chain management</topic><topic>Warehouse management</topic><topic>Warehousing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Jason Chao-Hsien</creatorcontrib><creatorcontrib>Shih, Po-Hsun</creatorcontrib><creatorcontrib>Wu, Ming-Hung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Omega (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Jason Chao-Hsien</au><au>Shih, Po-Hsun</au><au>Wu, Ming-Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Order batching in a pick-and-pass warehousing system with group genetic algorithm</atitle><jtitle>Omega (Oxford)</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>57</volume><spage>238</spage><epage>248</epage><pages>238-248</pages><issn>0305-0483</issn><eissn>1873-5274</eissn><coden>OMEGA6</coden><abstract>An order batching policy determines how orders are combined to form batches. Previous studies on order batching policy focused primarily on classic manual warehouses, and its effect on pick-and-pass systems has rarely been discussed. Pick-and-pass systems, a commonly used warehousing installation for small to medium-sized items, play a key role in managing a supply chain efficiently because the fast delivery of small and frequent inventory orders has become a crucial trading practice because of the rise of e-commerce and e-business. This paper proposes an order batching approach based on a group genetic algorithm to balance the workload of each picking zone and minimize the number of batches in a pick-and-pass system in an effort to improve system performance. A simulation model based on FlexSim is used to implement the proposed heuristic algorithm, and compare the throughput for different order batching policies. The results reveal that the proposed heuristic policy outperforms existing order batching policies in a pick-and-pass system.
•Order batching method is developed based on group genetic algorithm for a pick-and-pass system.•Balance of workloads among all pickers has a great impact on efficiency of pick-and-pass system.•Proposed heuristic policy improves the order picking efficiency in a pick-and-pass system.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.omega.2015.05.004</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0483 |
ispartof | Omega (Oxford), 2015-12, Vol.57, p.238-248 |
issn | 0305-0483 1873-5274 |
language | eng |
recordid | cdi_proquest_journals_1722457327 |
source | Elsevier ScienceDirect Journals |
subjects | Electronic commerce Genetic algorithms Heuristic Order batching policy Order picking Pick-and-pass system Small & medium sized enterprises-SME Studies Supply chain management Warehouse management Warehousing |
title | Order batching in a pick-and-pass warehousing system with group genetic algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A17%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Order%20batching%20in%20a%20pick-and-pass%20warehousing%20system%20with%20group%20genetic%20algorithm&rft.jtitle=Omega%20(Oxford)&rft.au=Pan,%20Jason%20Chao-Hsien&rft.date=2015-12-01&rft.volume=57&rft.spage=238&rft.epage=248&rft.pages=238-248&rft.issn=0305-0483&rft.eissn=1873-5274&rft.coden=OMEGA6&rft_id=info:doi/10.1016/j.omega.2015.05.004&rft_dat=%3Cproquest_cross%3E3838141521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1722457327&rft_id=info:pmid/&rft_els_id=S0305048315001048&rfr_iscdi=true |