Data-driven robotic sampling for marine ecosystem monitoring

Robotic sampling is attractive in many field robotics applications that require persistent collection of physical samples for ex-situ analysis. Examples abound in the earth sciences in studies involving the collection of rock, soil, and water samples for laboratory analysis. In our test domain, mari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2015-10, Vol.34 (12), p.1435-1452
Hauptverfasser: Das, Jnaneshwar, Py, Frédéric, Harvey, Julio B.J., Ryan, John P., Gellene, Alyssa, Graham, Rishi, Caron, David A., Rajan, Kanna, Sukhatme, Gaurav S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1452
container_issue 12
container_start_page 1435
container_title The International journal of robotics research
container_volume 34
creator Das, Jnaneshwar
Py, Frédéric
Harvey, Julio B.J.
Ryan, John P.
Gellene, Alyssa
Graham, Rishi
Caron, David A.
Rajan, Kanna
Sukhatme, Gaurav S.
description Robotic sampling is attractive in many field robotics applications that require persistent collection of physical samples for ex-situ analysis. Examples abound in the earth sciences in studies involving the collection of rock, soil, and water samples for laboratory analysis. In our test domain, marine ecosystem monitoring, detailed understanding of plankton ecology requires laboratory analysis of water samples, but predictions using physical and chemical properties measured in real-time by sensors aboard an autonomous underwater vehicle (AUV) can guide sample collection decisions. In this paper, we present a data-driven and opportunistic sampling strategy to minimize cumulative regret for batches of plankton samples acquired by an AUV over multiple surveys. Samples are labeled at the end of each survey, and used to update a probabilistic model that guides sampling during subsequent surveys. During a survey, the AUV makes irrevocable sample collection decisions online for a sequential stream of candidates, with no knowledge of the quality of future samples. In addition to extensive simulations using historical field data, we present results from a one-day field trial where beginning with a prior model learned from data collected and labeled in an earlier campaign, the AUV collected water samples with a high abundance of a pre-specified planktonic target. This is the first time such a field experiment has been carried out in its entirety in a data-driven fashion, in effect “closing the loop” on a significant and relevant ecosystem monitoring problem while allowing domain experts (marine ecologists) to specify the mission at a relatively high level.
doi_str_mv 10.1177/0278364915587723
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1719445692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364915587723</sage_id><sourcerecordid>3828957381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-13f191321bb58a028c72b2b801c5c18adc9162802ba41d5c34d2a31252bd6f313</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMoWFfvHgueo5l8NCl4kdVVYcGLnkOSpqXLtqlJV9j_3pZ6EMHTwLzfezM8hK6B3AJIeUeoVKzgJQihpKTsBGUgOWAGsjhF2SzjWT9HFyntCCGsIGWG7h_NaHAV2y_f5zHYMLYuT6Yb9m3f5HWIeWdi2_vcu5COafRd3oW-HcO0bC7RWW32yV_9zBX62Dy9r1_w9u35df2wxY4JMmJgNZTAKFgrlCFUOUkttYqAEw6UqVwJBVWEWsOhEo7xihoGVFBbFTUDtkI3S-4Qw-fBp1HvwiH200kNEkrORVHSiSIL5WJIKfpaD7Gdvj9qIHruSP_taLLgxZJM43-F_sd_A58qZOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719445692</pqid></control><display><type>article</type><title>Data-driven robotic sampling for marine ecosystem monitoring</title><source>SAGE Complete</source><creator>Das, Jnaneshwar ; Py, Frédéric ; Harvey, Julio B.J. ; Ryan, John P. ; Gellene, Alyssa ; Graham, Rishi ; Caron, David A. ; Rajan, Kanna ; Sukhatme, Gaurav S.</creator><creatorcontrib>Das, Jnaneshwar ; Py, Frédéric ; Harvey, Julio B.J. ; Ryan, John P. ; Gellene, Alyssa ; Graham, Rishi ; Caron, David A. ; Rajan, Kanna ; Sukhatme, Gaurav S.</creatorcontrib><description>Robotic sampling is attractive in many field robotics applications that require persistent collection of physical samples for ex-situ analysis. Examples abound in the earth sciences in studies involving the collection of rock, soil, and water samples for laboratory analysis. In our test domain, marine ecosystem monitoring, detailed understanding of plankton ecology requires laboratory analysis of water samples, but predictions using physical and chemical properties measured in real-time by sensors aboard an autonomous underwater vehicle (AUV) can guide sample collection decisions. In this paper, we present a data-driven and opportunistic sampling strategy to minimize cumulative regret for batches of plankton samples acquired by an AUV over multiple surveys. Samples are labeled at the end of each survey, and used to update a probabilistic model that guides sampling during subsequent surveys. During a survey, the AUV makes irrevocable sample collection decisions online for a sequential stream of candidates, with no knowledge of the quality of future samples. In addition to extensive simulations using historical field data, we present results from a one-day field trial where beginning with a prior model learned from data collected and labeled in an earlier campaign, the AUV collected water samples with a high abundance of a pre-specified planktonic target. This is the first time such a field experiment has been carried out in its entirety in a data-driven fashion, in effect “closing the loop” on a significant and relevant ecosystem monitoring problem while allowing domain experts (marine ecologists) to specify the mission at a relatively high level.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364915587723</identifier><identifier>CODEN: IJRREL</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Ecosystems ; Knowledge ; Plankton ; Real time ; Robotics ; Sampling</subject><ispartof>The International journal of robotics research, 2015-10, Vol.34 (12), p.1435-1452</ispartof><rights>The Author(s) 2015</rights><rights>Copyright SAGE PUBLICATIONS, INC. Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-13f191321bb58a028c72b2b801c5c18adc9162802ba41d5c34d2a31252bd6f313</citedby><cites>FETCH-LOGICAL-c350t-13f191321bb58a028c72b2b801c5c18adc9162802ba41d5c34d2a31252bd6f313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364915587723$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364915587723$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Das, Jnaneshwar</creatorcontrib><creatorcontrib>Py, Frédéric</creatorcontrib><creatorcontrib>Harvey, Julio B.J.</creatorcontrib><creatorcontrib>Ryan, John P.</creatorcontrib><creatorcontrib>Gellene, Alyssa</creatorcontrib><creatorcontrib>Graham, Rishi</creatorcontrib><creatorcontrib>Caron, David A.</creatorcontrib><creatorcontrib>Rajan, Kanna</creatorcontrib><creatorcontrib>Sukhatme, Gaurav S.</creatorcontrib><title>Data-driven robotic sampling for marine ecosystem monitoring</title><title>The International journal of robotics research</title><description>Robotic sampling is attractive in many field robotics applications that require persistent collection of physical samples for ex-situ analysis. Examples abound in the earth sciences in studies involving the collection of rock, soil, and water samples for laboratory analysis. In our test domain, marine ecosystem monitoring, detailed understanding of plankton ecology requires laboratory analysis of water samples, but predictions using physical and chemical properties measured in real-time by sensors aboard an autonomous underwater vehicle (AUV) can guide sample collection decisions. In this paper, we present a data-driven and opportunistic sampling strategy to minimize cumulative regret for batches of plankton samples acquired by an AUV over multiple surveys. Samples are labeled at the end of each survey, and used to update a probabilistic model that guides sampling during subsequent surveys. During a survey, the AUV makes irrevocable sample collection decisions online for a sequential stream of candidates, with no knowledge of the quality of future samples. In addition to extensive simulations using historical field data, we present results from a one-day field trial where beginning with a prior model learned from data collected and labeled in an earlier campaign, the AUV collected water samples with a high abundance of a pre-specified planktonic target. This is the first time such a field experiment has been carried out in its entirety in a data-driven fashion, in effect “closing the loop” on a significant and relevant ecosystem monitoring problem while allowing domain experts (marine ecologists) to specify the mission at a relatively high level.</description><subject>Ecosystems</subject><subject>Knowledge</subject><subject>Plankton</subject><subject>Real time</subject><subject>Robotics</subject><subject>Sampling</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMoWFfvHgueo5l8NCl4kdVVYcGLnkOSpqXLtqlJV9j_3pZ6EMHTwLzfezM8hK6B3AJIeUeoVKzgJQihpKTsBGUgOWAGsjhF2SzjWT9HFyntCCGsIGWG7h_NaHAV2y_f5zHYMLYuT6Yb9m3f5HWIeWdi2_vcu5COafRd3oW-HcO0bC7RWW32yV_9zBX62Dy9r1_w9u35df2wxY4JMmJgNZTAKFgrlCFUOUkttYqAEw6UqVwJBVWEWsOhEo7xihoGVFBbFTUDtkI3S-4Qw-fBp1HvwiH200kNEkrORVHSiSIL5WJIKfpaD7Gdvj9qIHruSP_taLLgxZJM43-F_sd_A58qZOY</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Das, Jnaneshwar</creator><creator>Py, Frédéric</creator><creator>Harvey, Julio B.J.</creator><creator>Ryan, John P.</creator><creator>Gellene, Alyssa</creator><creator>Graham, Rishi</creator><creator>Caron, David A.</creator><creator>Rajan, Kanna</creator><creator>Sukhatme, Gaurav S.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151001</creationdate><title>Data-driven robotic sampling for marine ecosystem monitoring</title><author>Das, Jnaneshwar ; Py, Frédéric ; Harvey, Julio B.J. ; Ryan, John P. ; Gellene, Alyssa ; Graham, Rishi ; Caron, David A. ; Rajan, Kanna ; Sukhatme, Gaurav S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-13f191321bb58a028c72b2b801c5c18adc9162802ba41d5c34d2a31252bd6f313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ecosystems</topic><topic>Knowledge</topic><topic>Plankton</topic><topic>Real time</topic><topic>Robotics</topic><topic>Sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Jnaneshwar</creatorcontrib><creatorcontrib>Py, Frédéric</creatorcontrib><creatorcontrib>Harvey, Julio B.J.</creatorcontrib><creatorcontrib>Ryan, John P.</creatorcontrib><creatorcontrib>Gellene, Alyssa</creatorcontrib><creatorcontrib>Graham, Rishi</creatorcontrib><creatorcontrib>Caron, David A.</creatorcontrib><creatorcontrib>Rajan, Kanna</creatorcontrib><creatorcontrib>Sukhatme, Gaurav S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Jnaneshwar</au><au>Py, Frédéric</au><au>Harvey, Julio B.J.</au><au>Ryan, John P.</au><au>Gellene, Alyssa</au><au>Graham, Rishi</au><au>Caron, David A.</au><au>Rajan, Kanna</au><au>Sukhatme, Gaurav S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven robotic sampling for marine ecosystem monitoring</atitle><jtitle>The International journal of robotics research</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>34</volume><issue>12</issue><spage>1435</spage><epage>1452</epage><pages>1435-1452</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><coden>IJRREL</coden><abstract>Robotic sampling is attractive in many field robotics applications that require persistent collection of physical samples for ex-situ analysis. Examples abound in the earth sciences in studies involving the collection of rock, soil, and water samples for laboratory analysis. In our test domain, marine ecosystem monitoring, detailed understanding of plankton ecology requires laboratory analysis of water samples, but predictions using physical and chemical properties measured in real-time by sensors aboard an autonomous underwater vehicle (AUV) can guide sample collection decisions. In this paper, we present a data-driven and opportunistic sampling strategy to minimize cumulative regret for batches of plankton samples acquired by an AUV over multiple surveys. Samples are labeled at the end of each survey, and used to update a probabilistic model that guides sampling during subsequent surveys. During a survey, the AUV makes irrevocable sample collection decisions online for a sequential stream of candidates, with no knowledge of the quality of future samples. In addition to extensive simulations using historical field data, we present results from a one-day field trial where beginning with a prior model learned from data collected and labeled in an earlier campaign, the AUV collected water samples with a high abundance of a pre-specified planktonic target. This is the first time such a field experiment has been carried out in its entirety in a data-driven fashion, in effect “closing the loop” on a significant and relevant ecosystem monitoring problem while allowing domain experts (marine ecologists) to specify the mission at a relatively high level.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364915587723</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-3649
ispartof The International journal of robotics research, 2015-10, Vol.34 (12), p.1435-1452
issn 0278-3649
1741-3176
language eng
recordid cdi_proquest_journals_1719445692
source SAGE Complete
subjects Ecosystems
Knowledge
Plankton
Real time
Robotics
Sampling
title Data-driven robotic sampling for marine ecosystem monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20robotic%20sampling%20for%20marine%20ecosystem%20monitoring&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Das,%20Jnaneshwar&rft.date=2015-10-01&rft.volume=34&rft.issue=12&rft.spage=1435&rft.epage=1452&rft.pages=1435-1452&rft.issn=0278-3649&rft.eissn=1741-3176&rft.coden=IJRREL&rft_id=info:doi/10.1177/0278364915587723&rft_dat=%3Cproquest_cross%3E3828957381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719445692&rft_id=info:pmid/&rft_sage_id=10.1177_0278364915587723&rfr_iscdi=true