Small perturbations of an indefinite elliptic equation

We investigate a perturbed semilinear indefinite elliptic equation and show that the results known for the unperturbed equation still hold if the perturbation is sufficiently small. To this end, we use a continuity argument that allows us to establish the existence of two positive solutions even in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2015-10, Vol.288 (14-15), p.1727-1740
1. Verfasser: Ramos Quoirin, Humberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1740
container_issue 14-15
container_start_page 1727
container_title Mathematische Nachrichten
container_volume 288
creator Ramos Quoirin, Humberto
description We investigate a perturbed semilinear indefinite elliptic equation and show that the results known for the unperturbed equation still hold if the perturbation is sufficiently small. To this end, we use a continuity argument that allows us to establish the existence of two positive solutions even in the case where the strong maximum principle does not apply.
doi_str_mv 10.1002/mana.201400353
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1718190331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3824047141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4253-bcafd9a6010cabd48e2e4777da9fe8036594ec8eb1704b8d85ec8bcb74c1d5bf3</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMoOKdXzwXPnS-_muY4hk5hVmSK3kKSppDZtTVt0f33dlaGN0-PB9_3HnwIXWKYYQByvdWVnhHADIByeoQmmBMSkwQnx2gyADzmKXs7RWdtuwEAKUUyQcl6q8syalzo-mB05-uqjeoi0lXkq9wVvvKdi1xZ-qbzNnIf_Q9zjk4KXbbu4ndO0cvtzfPiLl49Lu8X81VsGeE0NlYXudQJYLDa5Cx1xDEhRK5l4VKgCZfM2dQZLICZNE_5sBlrBLM456agU3Q13m1C_dG7tlObug_V8FJhgVMsgVI8ULORsqFu2-AK1QS_1WGnMKh9G7Vvow5tBkGOwqcv3e4fWj3Ms_lfNx5d33bu6-Dq8K4SQQVXr9lSQbaUJFtT9US_Ab65d9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718190331</pqid></control><display><type>article</type><title>Small perturbations of an indefinite elliptic equation</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Ramos Quoirin, Humberto</creator><creatorcontrib>Ramos Quoirin, Humberto</creatorcontrib><description>We investigate a perturbed semilinear indefinite elliptic equation and show that the results known for the unperturbed equation still hold if the perturbation is sufficiently small. To this end, we use a continuity argument that allows us to establish the existence of two positive solutions even in the case where the strong maximum principle does not apply.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201400353</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>35J20 ; 35J62 ; 35J92 ; Indefinite elliptic problem ; nonhomogeneous nonlinearity ; variational methods</subject><ispartof>Mathematische Nachrichten, 2015-10, Vol.288 (14-15), p.1727-1740</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4253-bcafd9a6010cabd48e2e4777da9fe8036594ec8eb1704b8d85ec8bcb74c1d5bf3</citedby><cites>FETCH-LOGICAL-c4253-bcafd9a6010cabd48e2e4777da9fe8036594ec8eb1704b8d85ec8bcb74c1d5bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.201400353$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.201400353$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Ramos Quoirin, Humberto</creatorcontrib><title>Small perturbations of an indefinite elliptic equation</title><title>Mathematische Nachrichten</title><addtitle>Math. Nachr</addtitle><description>We investigate a perturbed semilinear indefinite elliptic equation and show that the results known for the unperturbed equation still hold if the perturbation is sufficiently small. To this end, we use a continuity argument that allows us to establish the existence of two positive solutions even in the case where the strong maximum principle does not apply.</description><subject>35J20</subject><subject>35J62</subject><subject>35J92</subject><subject>Indefinite elliptic problem</subject><subject>nonhomogeneous nonlinearity</subject><subject>variational methods</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIMoOKdXzwXPnS-_muY4hk5hVmSK3kKSppDZtTVt0f33dlaGN0-PB9_3HnwIXWKYYQByvdWVnhHADIByeoQmmBMSkwQnx2gyADzmKXs7RWdtuwEAKUUyQcl6q8syalzo-mB05-uqjeoi0lXkq9wVvvKdi1xZ-qbzNnIf_Q9zjk4KXbbu4ndO0cvtzfPiLl49Lu8X81VsGeE0NlYXudQJYLDa5Cx1xDEhRK5l4VKgCZfM2dQZLICZNE_5sBlrBLM456agU3Q13m1C_dG7tlObug_V8FJhgVMsgVI8ULORsqFu2-AK1QS_1WGnMKh9G7Vvow5tBkGOwqcv3e4fWj3Ms_lfNx5d33bu6-Dq8K4SQQVXr9lSQbaUJFtT9US_Ab65d9U</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Ramos Quoirin, Humberto</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201510</creationdate><title>Small perturbations of an indefinite elliptic equation</title><author>Ramos Quoirin, Humberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4253-bcafd9a6010cabd48e2e4777da9fe8036594ec8eb1704b8d85ec8bcb74c1d5bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>35J20</topic><topic>35J62</topic><topic>35J92</topic><topic>Indefinite elliptic problem</topic><topic>nonhomogeneous nonlinearity</topic><topic>variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos Quoirin, Humberto</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos Quoirin, Humberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small perturbations of an indefinite elliptic equation</atitle><jtitle>Mathematische Nachrichten</jtitle><addtitle>Math. Nachr</addtitle><date>2015-10</date><risdate>2015</risdate><volume>288</volume><issue>14-15</issue><spage>1727</spage><epage>1740</epage><pages>1727-1740</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>We investigate a perturbed semilinear indefinite elliptic equation and show that the results known for the unperturbed equation still hold if the perturbation is sufficiently small. To this end, we use a continuity argument that allows us to establish the existence of two positive solutions even in the case where the strong maximum principle does not apply.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mana.201400353</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2015-10, Vol.288 (14-15), p.1727-1740
issn 0025-584X
1522-2616
language eng
recordid cdi_proquest_journals_1718190331
source Wiley Online Library - AutoHoldings Journals
subjects 35J20
35J62
35J92
Indefinite elliptic problem
nonhomogeneous nonlinearity
variational methods
title Small perturbations of an indefinite elliptic equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20perturbations%20of%20an%20indefinite%20elliptic%20equation&rft.jtitle=Mathematische%20Nachrichten&rft.au=Ramos%20Quoirin,%20Humberto&rft.date=2015-10&rft.volume=288&rft.issue=14-15&rft.spage=1727&rft.epage=1740&rft.pages=1727-1740&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201400353&rft_dat=%3Cproquest_cross%3E3824047141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718190331&rft_id=info:pmid/&rfr_iscdi=true