From dispersal constraints to landscape connectivity: lessons from species distribution modeling

Connectivity plays a crucial role in determining the spread, viability, and persistence of populations across space. Dispersal across landscapes, or the movement of individuals or genes among resource patches, is critical for functional connectivity. Yet current connectivity modelling typically uses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecography (Copenhagen) 2015-10, Vol.38 (10), p.967-978
Hauptverfasser: Vasudev, Divya, Fletcher Jr, Robert J., Goswami, Varun R., Krishnadas, Meghna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 978
container_issue 10
container_start_page 967
container_title Ecography (Copenhagen)
container_volume 38
creator Vasudev, Divya
Fletcher Jr, Robert J.
Goswami, Varun R.
Krishnadas, Meghna
description Connectivity plays a crucial role in determining the spread, viability, and persistence of populations across space. Dispersal across landscapes, or the movement of individuals or genes among resource patches, is critical for functional connectivity. Yet current connectivity modelling typically uses information on species location or habitat preference rather than movement, which unfortunately may not capture key dispersal limitations. We argue that recent developments in species distribution modelling provide insightful lessons for addressing this gap and advancing our understanding of connectivity. We suggest shifting the focus of connectivity modelling from locating where animals potentially disperse to a process-based approach directed towards understanding and mapping factors that limit successful dispersal. To do so, we propose defining species dispersal requirements through identifying spatial, environmental and intrinsic constraints to successful dispersal, analogous to identifying environmental dimensions that define niches. We discuss the benefits of this constraint-based framework for understanding the distribution of species, predicting species responses to climate change, and connectivity conservation practice. We illustrate how the framework can aid in identifying potential detrimental effects of human activities on connectivity and species persistence, and can spur the implementation of innovative conservation strategies. The proposed framework clarifies the validity and contextual utility of objectives and measures in existing connectivity models, and identifies gaps that may impede our understanding of connectivity and its integration into successful conservation strategies. We expect that this framework will facilitate a mechanistic approach to understanding and conserving connectivity, which will aid in effectively predicting and mitigating effects of ongoing environmental change.
doi_str_mv 10.1111/ecog.01306
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1717191015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>ecography.38.10.967</jstor_id><sourcerecordid>ecography.38.10.967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5486-25a239bf5308a200613990dc31f08305b7322085b6be38ded35bdd64d5fa1e113</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEuVj4RdEYkFIgXNcOzEbqqAgEAwFMRondopLGgfbBfrvcQjqyN1wwz3PnfQidIThDMc615WdnwEmwLbQCDOAFGiRb6MRcGBpTjnsoj3vFwA446wYoddrZ5eJMr7TzssmqWzrg5OmDT4JNmlkq3wlO90vWl0F82nC-iJptPeRTOrejm5ltO-vBGfKVTC2TZZW6ca08wO0U8vG68O_uY-er6-eJjfp_eP0dnJ5n1Z0XLA0ozIjvKwpgUJmAAwTzkFVBNdQEKBlTrIMClqyUpNCaUVoqRQbK1pLrDEm--h4uNs5-7HSPoiFXbk2vhQ4j80xYBqp04GqnPXe6Vp0ziylWwsMok9Q9AmK3wQjDAP8ZRq9_ocUV5PH6Z9yMigLH6zbKD3qZPe2FqTofc7yiKYDGlPT3xtUuncRtzkVLw9TAWw2w3eciin5AZtxkTc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1717191015</pqid></control><display><type>article</type><title>From dispersal constraints to landscape connectivity: lessons from species distribution modeling</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Vasudev, Divya ; Fletcher Jr, Robert J. ; Goswami, Varun R. ; Krishnadas, Meghna</creator><creatorcontrib>Vasudev, Divya ; Fletcher Jr, Robert J. ; Goswami, Varun R. ; Krishnadas, Meghna</creatorcontrib><description>Connectivity plays a crucial role in determining the spread, viability, and persistence of populations across space. Dispersal across landscapes, or the movement of individuals or genes among resource patches, is critical for functional connectivity. Yet current connectivity modelling typically uses information on species location or habitat preference rather than movement, which unfortunately may not capture key dispersal limitations. We argue that recent developments in species distribution modelling provide insightful lessons for addressing this gap and advancing our understanding of connectivity. We suggest shifting the focus of connectivity modelling from locating where animals potentially disperse to a process-based approach directed towards understanding and mapping factors that limit successful dispersal. To do so, we propose defining species dispersal requirements through identifying spatial, environmental and intrinsic constraints to successful dispersal, analogous to identifying environmental dimensions that define niches. We discuss the benefits of this constraint-based framework for understanding the distribution of species, predicting species responses to climate change, and connectivity conservation practice. We illustrate how the framework can aid in identifying potential detrimental effects of human activities on connectivity and species persistence, and can spur the implementation of innovative conservation strategies. The proposed framework clarifies the validity and contextual utility of objectives and measures in existing connectivity models, and identifies gaps that may impede our understanding of connectivity and its integration into successful conservation strategies. We expect that this framework will facilitate a mechanistic approach to understanding and conserving connectivity, which will aid in effectively predicting and mitigating effects of ongoing environmental change.</description><identifier>ISSN: 0906-7590</identifier><identifier>EISSN: 1600-0587</identifier><identifier>DOI: 10.1111/ecog.01306</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Dispersal ; Forum</subject><ispartof>Ecography (Copenhagen), 2015-10, Vol.38 (10), p.967-978</ispartof><rights>2015 Nordic Society Oikos</rights><rights>2015 The Authors</rights><rights>Ecography © 2015 Nordic Society Oikos</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5486-25a239bf5308a200613990dc31f08305b7322085b6be38ded35bdd64d5fa1e113</citedby><cites>FETCH-LOGICAL-c5486-25a239bf5308a200613990dc31f08305b7322085b6be38ded35bdd64d5fa1e113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/ecography.38.10.967$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/ecography.38.10.967$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Vasudev, Divya</creatorcontrib><creatorcontrib>Fletcher Jr, Robert J.</creatorcontrib><creatorcontrib>Goswami, Varun R.</creatorcontrib><creatorcontrib>Krishnadas, Meghna</creatorcontrib><title>From dispersal constraints to landscape connectivity: lessons from species distribution modeling</title><title>Ecography (Copenhagen)</title><addtitle>Ecography</addtitle><description>Connectivity plays a crucial role in determining the spread, viability, and persistence of populations across space. Dispersal across landscapes, or the movement of individuals or genes among resource patches, is critical for functional connectivity. Yet current connectivity modelling typically uses information on species location or habitat preference rather than movement, which unfortunately may not capture key dispersal limitations. We argue that recent developments in species distribution modelling provide insightful lessons for addressing this gap and advancing our understanding of connectivity. We suggest shifting the focus of connectivity modelling from locating where animals potentially disperse to a process-based approach directed towards understanding and mapping factors that limit successful dispersal. To do so, we propose defining species dispersal requirements through identifying spatial, environmental and intrinsic constraints to successful dispersal, analogous to identifying environmental dimensions that define niches. We discuss the benefits of this constraint-based framework for understanding the distribution of species, predicting species responses to climate change, and connectivity conservation practice. We illustrate how the framework can aid in identifying potential detrimental effects of human activities on connectivity and species persistence, and can spur the implementation of innovative conservation strategies. The proposed framework clarifies the validity and contextual utility of objectives and measures in existing connectivity models, and identifies gaps that may impede our understanding of connectivity and its integration into successful conservation strategies. We expect that this framework will facilitate a mechanistic approach to understanding and conserving connectivity, which will aid in effectively predicting and mitigating effects of ongoing environmental change.</description><subject>Dispersal</subject><subject>Forum</subject><issn>0906-7590</issn><issn>1600-0587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhi0EEuVj4RdEYkFIgXNcOzEbqqAgEAwFMRondopLGgfbBfrvcQjqyN1wwz3PnfQidIThDMc615WdnwEmwLbQCDOAFGiRb6MRcGBpTjnsoj3vFwA446wYoddrZ5eJMr7TzssmqWzrg5OmDT4JNmlkq3wlO90vWl0F82nC-iJptPeRTOrejm5ltO-vBGfKVTC2TZZW6ca08wO0U8vG68O_uY-er6-eJjfp_eP0dnJ5n1Z0XLA0ozIjvKwpgUJmAAwTzkFVBNdQEKBlTrIMClqyUpNCaUVoqRQbK1pLrDEm--h4uNs5-7HSPoiFXbk2vhQ4j80xYBqp04GqnPXe6Vp0ziylWwsMok9Q9AmK3wQjDAP8ZRq9_ocUV5PH6Z9yMigLH6zbKD3qZPe2FqTofc7yiKYDGlPT3xtUuncRtzkVLw9TAWw2w3eciin5AZtxkTc</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Vasudev, Divya</creator><creator>Fletcher Jr, Robert J.</creator><creator>Goswami, Varun R.</creator><creator>Krishnadas, Meghna</creator><general>Blackwell Publishing Ltd</general><general>Nordic Society Oikos</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>201510</creationdate><title>From dispersal constraints to landscape connectivity: lessons from species distribution modeling</title><author>Vasudev, Divya ; Fletcher Jr, Robert J. ; Goswami, Varun R. ; Krishnadas, Meghna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5486-25a239bf5308a200613990dc31f08305b7322085b6be38ded35bdd64d5fa1e113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Dispersal</topic><topic>Forum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasudev, Divya</creatorcontrib><creatorcontrib>Fletcher Jr, Robert J.</creatorcontrib><creatorcontrib>Goswami, Varun R.</creatorcontrib><creatorcontrib>Krishnadas, Meghna</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>Ecography (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasudev, Divya</au><au>Fletcher Jr, Robert J.</au><au>Goswami, Varun R.</au><au>Krishnadas, Meghna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From dispersal constraints to landscape connectivity: lessons from species distribution modeling</atitle><jtitle>Ecography (Copenhagen)</jtitle><addtitle>Ecography</addtitle><date>2015-10</date><risdate>2015</risdate><volume>38</volume><issue>10</issue><spage>967</spage><epage>978</epage><pages>967-978</pages><issn>0906-7590</issn><eissn>1600-0587</eissn><abstract>Connectivity plays a crucial role in determining the spread, viability, and persistence of populations across space. Dispersal across landscapes, or the movement of individuals or genes among resource patches, is critical for functional connectivity. Yet current connectivity modelling typically uses information on species location or habitat preference rather than movement, which unfortunately may not capture key dispersal limitations. We argue that recent developments in species distribution modelling provide insightful lessons for addressing this gap and advancing our understanding of connectivity. We suggest shifting the focus of connectivity modelling from locating where animals potentially disperse to a process-based approach directed towards understanding and mapping factors that limit successful dispersal. To do so, we propose defining species dispersal requirements through identifying spatial, environmental and intrinsic constraints to successful dispersal, analogous to identifying environmental dimensions that define niches. We discuss the benefits of this constraint-based framework for understanding the distribution of species, predicting species responses to climate change, and connectivity conservation practice. We illustrate how the framework can aid in identifying potential detrimental effects of human activities on connectivity and species persistence, and can spur the implementation of innovative conservation strategies. The proposed framework clarifies the validity and contextual utility of objectives and measures in existing connectivity models, and identifies gaps that may impede our understanding of connectivity and its integration into successful conservation strategies. We expect that this framework will facilitate a mechanistic approach to understanding and conserving connectivity, which will aid in effectively predicting and mitigating effects of ongoing environmental change.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ecog.01306</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0906-7590
ispartof Ecography (Copenhagen), 2015-10, Vol.38 (10), p.967-978
issn 0906-7590
1600-0587
language eng
recordid cdi_proquest_journals_1717191015
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Dispersal
Forum
title From dispersal constraints to landscape connectivity: lessons from species distribution modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T22%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20dispersal%20constraints%20to%20landscape%20connectivity:%20lessons%20from%20species%20distribution%20modeling&rft.jtitle=Ecography%20(Copenhagen)&rft.au=Vasudev,%20Divya&rft.date=2015-10&rft.volume=38&rft.issue=10&rft.spage=967&rft.epage=978&rft.pages=967-978&rft.issn=0906-7590&rft.eissn=1600-0587&rft_id=info:doi/10.1111/ecog.01306&rft_dat=%3Cjstor_proqu%3Eecography.38.10.967%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1717191015&rft_id=info:pmid/&rft_jstor_id=ecography.38.10.967&rfr_iscdi=true