Stochastic Event-Triggered Sensor Schedule for Remote State Estimation
We propose an open-loop and a closed-loop stochastic event-triggered sensor schedule for remote state estimation. Both schedules overcome the essential difficulties of existing schedules in recent literature works where, through introducing a deterministic event-triggering mechanism, the Gaussian pr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2015-10, Vol.60 (10), p.2661-2675 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2675 |
---|---|
container_issue | 10 |
container_start_page | 2661 |
container_title | IEEE transactions on automatic control |
container_volume | 60 |
creator | Duo Han Yilin Mo Junfeng Wu Weerakkody, Sean Sinopoli, Bruno Ling Shi |
description | We propose an open-loop and a closed-loop stochastic event-triggered sensor schedule for remote state estimation. Both schedules overcome the essential difficulties of existing schedules in recent literature works where, through introducing a deterministic event-triggering mechanism, the Gaussian property of the innovation process is destroyed which produces a challenging nonlinear filtering problem that cannot be solved unless approximation techniques are adopted. The proposed stochastic event-triggered sensor schedules eliminate such approximations. Under these two schedules, the minimum mean squared error (MMSE) estimator and its estimation error covariance matrix at the remote estimator are given in a closed-form. The stability in terms of the expected error covariance and the sample path of the error covariance for both schedules is studied. We also formulate and solve an optimization problem to obtain the minimum communication rate under some estimation quality constraint using the open-loop sensor schedule. A numerical comparison between the closed-loop MMSE estimator and a typical approximate MMSE estimator with deterministic event-triggered sensor schedule, in a problem setting of target tracking, shows the superiority of the proposed sensor schedule. |
doi_str_mv | 10.1109/TAC.2015.2406975 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1717092511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7047754</ieee_id><sourcerecordid>3820297231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-e0f24852ebad10351f9cb3b04a80cba4e1bc427e527a85e6b7e08ddfacb3ae773</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-pO_uR3RxLaVUoCKael81m0qa0Sd1NBP-9W1o8eJlh4HmHmYeQe6ATAJo_r6azCaMgJ0zQLFfygoxASp0yyfglGVEKOs2Zzq7JTQjbOGZCwIgsir5zGxv6xiXzb2z7dOWb9Ro9VkmBbeh8UrgNVsMOkzoOH7jvekyK3sY6j7G97ZuuvSVXtd0FvDv3MflczFez13T5_vI2my5Tx7OsT5HWTGjJsLQVUC6hzl3JSyqspq60AqF0gimUTFktMSsVUl1VtY2URaX4mDyd9h589zVg6M2-CQ53O9tiNwQDmkkhBXAe0cd_6LYbfBuvM6BA0ZxJgEjRE-V8F4LH2hx8_Mn_GKDmKNZEseYo1pzFxsjDKdIg4h-uqFBKCv4LyzVzxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1717092511</pqid></control><display><type>article</type><title>Stochastic Event-Triggered Sensor Schedule for Remote State Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Duo Han ; Yilin Mo ; Junfeng Wu ; Weerakkody, Sean ; Sinopoli, Bruno ; Ling Shi</creator><creatorcontrib>Duo Han ; Yilin Mo ; Junfeng Wu ; Weerakkody, Sean ; Sinopoli, Bruno ; Ling Shi</creatorcontrib><description>We propose an open-loop and a closed-loop stochastic event-triggered sensor schedule for remote state estimation. Both schedules overcome the essential difficulties of existing schedules in recent literature works where, through introducing a deterministic event-triggering mechanism, the Gaussian property of the innovation process is destroyed which produces a challenging nonlinear filtering problem that cannot be solved unless approximation techniques are adopted. The proposed stochastic event-triggered sensor schedules eliminate such approximations. Under these two schedules, the minimum mean squared error (MMSE) estimator and its estimation error covariance matrix at the remote estimator are given in a closed-form. The stability in terms of the expected error covariance and the sample path of the error covariance for both schedules is studied. We also formulate and solve an optimization problem to obtain the minimum communication rate under some estimation quality constraint using the open-loop sensor schedule. A numerical comparison between the closed-loop MMSE estimator and a typical approximate MMSE estimator with deterministic event-triggered sensor schedule, in a problem setting of target tracking, shows the superiority of the proposed sensor schedule.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2015.2406975</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Covariance matrices ; Error analysis ; Estimators ; Kalman filters ; Mathematical analysis ; Remote sensors ; Schedules ; Sensors ; State estimation ; Stochasticity ; Technological innovation</subject><ispartof>IEEE transactions on automatic control, 2015-10, Vol.60 (10), p.2661-2675</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-e0f24852ebad10351f9cb3b04a80cba4e1bc427e527a85e6b7e08ddfacb3ae773</citedby><cites>FETCH-LOGICAL-c366t-e0f24852ebad10351f9cb3b04a80cba4e1bc427e527a85e6b7e08ddfacb3ae773</cites><orcidid>0000-0001-7937-6737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7047754$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7047754$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Duo Han</creatorcontrib><creatorcontrib>Yilin Mo</creatorcontrib><creatorcontrib>Junfeng Wu</creatorcontrib><creatorcontrib>Weerakkody, Sean</creatorcontrib><creatorcontrib>Sinopoli, Bruno</creatorcontrib><creatorcontrib>Ling Shi</creatorcontrib><title>Stochastic Event-Triggered Sensor Schedule for Remote State Estimation</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We propose an open-loop and a closed-loop stochastic event-triggered sensor schedule for remote state estimation. Both schedules overcome the essential difficulties of existing schedules in recent literature works where, through introducing a deterministic event-triggering mechanism, the Gaussian property of the innovation process is destroyed which produces a challenging nonlinear filtering problem that cannot be solved unless approximation techniques are adopted. The proposed stochastic event-triggered sensor schedules eliminate such approximations. Under these two schedules, the minimum mean squared error (MMSE) estimator and its estimation error covariance matrix at the remote estimator are given in a closed-form. The stability in terms of the expected error covariance and the sample path of the error covariance for both schedules is studied. We also formulate and solve an optimization problem to obtain the minimum communication rate under some estimation quality constraint using the open-loop sensor schedule. A numerical comparison between the closed-loop MMSE estimator and a typical approximate MMSE estimator with deterministic event-triggered sensor schedule, in a problem setting of target tracking, shows the superiority of the proposed sensor schedule.</description><subject>Approximation</subject><subject>Covariance matrices</subject><subject>Error analysis</subject><subject>Estimators</subject><subject>Kalman filters</subject><subject>Mathematical analysis</subject><subject>Remote sensors</subject><subject>Schedules</subject><subject>Sensors</subject><subject>State estimation</subject><subject>Stochasticity</subject><subject>Technological innovation</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-pO_uR3RxLaVUoCKael81m0qa0Sd1NBP-9W1o8eJlh4HmHmYeQe6ATAJo_r6azCaMgJ0zQLFfygoxASp0yyfglGVEKOs2Zzq7JTQjbOGZCwIgsir5zGxv6xiXzb2z7dOWb9Ro9VkmBbeh8UrgNVsMOkzoOH7jvekyK3sY6j7G97ZuuvSVXtd0FvDv3MflczFez13T5_vI2my5Tx7OsT5HWTGjJsLQVUC6hzl3JSyqspq60AqF0gimUTFktMSsVUl1VtY2URaX4mDyd9h589zVg6M2-CQ53O9tiNwQDmkkhBXAe0cd_6LYbfBuvM6BA0ZxJgEjRE-V8F4LH2hx8_Mn_GKDmKNZEseYo1pzFxsjDKdIg4h-uqFBKCv4LyzVzxw</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Duo Han</creator><creator>Yilin Mo</creator><creator>Junfeng Wu</creator><creator>Weerakkody, Sean</creator><creator>Sinopoli, Bruno</creator><creator>Ling Shi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><orcidid>https://orcid.org/0000-0001-7937-6737</orcidid></search><sort><creationdate>201510</creationdate><title>Stochastic Event-Triggered Sensor Schedule for Remote State Estimation</title><author>Duo Han ; Yilin Mo ; Junfeng Wu ; Weerakkody, Sean ; Sinopoli, Bruno ; Ling Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-e0f24852ebad10351f9cb3b04a80cba4e1bc427e527a85e6b7e08ddfacb3ae773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Covariance matrices</topic><topic>Error analysis</topic><topic>Estimators</topic><topic>Kalman filters</topic><topic>Mathematical analysis</topic><topic>Remote sensors</topic><topic>Schedules</topic><topic>Sensors</topic><topic>State estimation</topic><topic>Stochasticity</topic><topic>Technological innovation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duo Han</creatorcontrib><creatorcontrib>Yilin Mo</creatorcontrib><creatorcontrib>Junfeng Wu</creatorcontrib><creatorcontrib>Weerakkody, Sean</creatorcontrib><creatorcontrib>Sinopoli, Bruno</creatorcontrib><creatorcontrib>Ling Shi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duo Han</au><au>Yilin Mo</au><au>Junfeng Wu</au><au>Weerakkody, Sean</au><au>Sinopoli, Bruno</au><au>Ling Shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Event-Triggered Sensor Schedule for Remote State Estimation</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2015-10</date><risdate>2015</risdate><volume>60</volume><issue>10</issue><spage>2661</spage><epage>2675</epage><pages>2661-2675</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We propose an open-loop and a closed-loop stochastic event-triggered sensor schedule for remote state estimation. Both schedules overcome the essential difficulties of existing schedules in recent literature works where, through introducing a deterministic event-triggering mechanism, the Gaussian property of the innovation process is destroyed which produces a challenging nonlinear filtering problem that cannot be solved unless approximation techniques are adopted. The proposed stochastic event-triggered sensor schedules eliminate such approximations. Under these two schedules, the minimum mean squared error (MMSE) estimator and its estimation error covariance matrix at the remote estimator are given in a closed-form. The stability in terms of the expected error covariance and the sample path of the error covariance for both schedules is studied. We also formulate and solve an optimization problem to obtain the minimum communication rate under some estimation quality constraint using the open-loop sensor schedule. A numerical comparison between the closed-loop MMSE estimator and a typical approximate MMSE estimator with deterministic event-triggered sensor schedule, in a problem setting of target tracking, shows the superiority of the proposed sensor schedule.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2015.2406975</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7937-6737</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2015-10, Vol.60 (10), p.2661-2675 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_1717092511 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation Covariance matrices Error analysis Estimators Kalman filters Mathematical analysis Remote sensors Schedules Sensors State estimation Stochasticity Technological innovation |
title | Stochastic Event-Triggered Sensor Schedule for Remote State Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A49%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Event-Triggered%20Sensor%20Schedule%20for%20Remote%20State%20Estimation&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Duo%20Han&rft.date=2015-10&rft.volume=60&rft.issue=10&rft.spage=2661&rft.epage=2675&rft.pages=2661-2675&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2015.2406975&rft_dat=%3Cproquest_RIE%3E3820297231%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1717092511&rft_id=info:pmid/&rft_ieee_id=7047754&rfr_iscdi=true |