Characterising discrete-time linear systems with the “mixed” positive real and bounded real property

In this paper, we present characterisations of linear, shift-invariant, discrete-time systems that exhibit mixtures of small gain-type properties and positive real-type behaviours in a certain manner. These “mixed” systems are already fairly well characterised in the continuous-time domain, but the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of control 2014-09, Vol.20 (5), p.259-268
Hauptverfasser: Souza, Matheus, Griggs, Wynita M., Ordóñez-Hurtado, Rodrigo H., Sajja, S. Shravan K., Lanzon, Alexander, Shorten, Robert N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 5
container_start_page 259
container_title European journal of control
container_volume 20
creator Souza, Matheus
Griggs, Wynita M.
Ordóñez-Hurtado, Rodrigo H.
Sajja, S. Shravan K.
Lanzon, Alexander
Shorten, Robert N.
description In this paper, we present characterisations of linear, shift-invariant, discrete-time systems that exhibit mixtures of small gain-type properties and positive real-type behaviours in a certain manner. These “mixed” systems are already fairly well characterised in the continuous-time domain, but the widespread adoption of digital controllers makes it necessary to verify whether commonly used discretisation procedures preserve the characteristic of “mixedness”. First, we analyse the effects of classical discretisation methods on the “mixed” property using Nyquist methods. A frequency domain feedback stability result is then presented. Finally, we develop a spectral-based characterisation of “mixed” discrete-time systems which provides a practical computational test that can also be applied to the MIMO case. Several examples validate the developed theory.
doi_str_mv 10.1016/j.ejcon.2014.07.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1716313508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0947358014000582</els_id><sourcerecordid>3817933131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-4e061f3f461f67b2ebae245616aa3a1fa709bcd9f330bb36e326daeb800685c43</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVKVfwMUS54R1nDjtgQOqeEmVuMDZcuwNcdQkxXYLvfVD4Of6JbiUM7vSrrSa2dEMIZcMUgZMXLcptnro0wxYnkKZAmQnZMRyXiSFKNkpGcEsLxNeTOGcTLxvIRbnLPaINPNGOaUDOutt_0aN9dphwCTYDunS9qgc9VsfsPP0w4aGhgbpfvfV2U80-903XQ3eBrtB6lAtqeoNrYZ1b9AcDys3rNCF7QU5q9XS4-Rvj8nr_d3L_DFZPD88zW8Xic6BhSRHEKzmdR6nKKsMK4VZXggmlOKK1aqEWaXNrOYcqooL5JkwCqspgJgWOudjcnX8G4Xf1-iDbIe166OkZCUT0XQB04jiR5R2g_cOa7lytlNuKxnIQ6qylb-pykOqEkoZU42smyMLo4GNRSe9tthrNNahDtIM9l_-DyCHhH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1716313508</pqid></control><display><type>article</type><title>Characterising discrete-time linear systems with the “mixed” positive real and bounded real property</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><creator>Souza, Matheus ; Griggs, Wynita M. ; Ordóñez-Hurtado, Rodrigo H. ; Sajja, S. Shravan K. ; Lanzon, Alexander ; Shorten, Robert N.</creator><creatorcontrib>Souza, Matheus ; Griggs, Wynita M. ; Ordóñez-Hurtado, Rodrigo H. ; Sajja, S. Shravan K. ; Lanzon, Alexander ; Shorten, Robert N.</creatorcontrib><description>In this paper, we present characterisations of linear, shift-invariant, discrete-time systems that exhibit mixtures of small gain-type properties and positive real-type behaviours in a certain manner. These “mixed” systems are already fairly well characterised in the continuous-time domain, but the widespread adoption of digital controllers makes it necessary to verify whether commonly used discretisation procedures preserve the characteristic of “mixedness”. First, we analyse the effects of classical discretisation methods on the “mixed” property using Nyquist methods. A frequency domain feedback stability result is then presented. Finally, we develop a spectral-based characterisation of “mixed” discrete-time systems which provides a practical computational test that can also be applied to the MIMO case. Several examples validate the developed theory.</description><identifier>ISSN: 0947-3580</identifier><identifier>EISSN: 1435-5671</identifier><identifier>DOI: 10.1016/j.ejcon.2014.07.002</identifier><language>eng</language><publisher>Philadelphia: Elsevier Ltd</publisher><subject>Behavior ; Discrete-time system ; Eigenvalues ; Finite frequency bounded realness ; Finite frequency positive realness ; Linear system ; Methods ; Stability ; Studies</subject><ispartof>European journal of control, 2014-09, Vol.20 (5), p.259-268</ispartof><rights>2014 European Control Association</rights><rights>Copyright Elsevier Limited 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-4e061f3f461f67b2ebae245616aa3a1fa709bcd9f330bb36e326daeb800685c43</citedby><cites>FETCH-LOGICAL-c401t-4e061f3f461f67b2ebae245616aa3a1fa709bcd9f330bb36e326daeb800685c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1716313508?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Souza, Matheus</creatorcontrib><creatorcontrib>Griggs, Wynita M.</creatorcontrib><creatorcontrib>Ordóñez-Hurtado, Rodrigo H.</creatorcontrib><creatorcontrib>Sajja, S. Shravan K.</creatorcontrib><creatorcontrib>Lanzon, Alexander</creatorcontrib><creatorcontrib>Shorten, Robert N.</creatorcontrib><title>Characterising discrete-time linear systems with the “mixed” positive real and bounded real property</title><title>European journal of control</title><description>In this paper, we present characterisations of linear, shift-invariant, discrete-time systems that exhibit mixtures of small gain-type properties and positive real-type behaviours in a certain manner. These “mixed” systems are already fairly well characterised in the continuous-time domain, but the widespread adoption of digital controllers makes it necessary to verify whether commonly used discretisation procedures preserve the characteristic of “mixedness”. First, we analyse the effects of classical discretisation methods on the “mixed” property using Nyquist methods. A frequency domain feedback stability result is then presented. Finally, we develop a spectral-based characterisation of “mixed” discrete-time systems which provides a practical computational test that can also be applied to the MIMO case. Several examples validate the developed theory.</description><subject>Behavior</subject><subject>Discrete-time system</subject><subject>Eigenvalues</subject><subject>Finite frequency bounded realness</subject><subject>Finite frequency positive realness</subject><subject>Linear system</subject><subject>Methods</subject><subject>Stability</subject><subject>Studies</subject><issn>0947-3580</issn><issn>1435-5671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMtOwzAQtBBIVKVfwMUS54R1nDjtgQOqeEmVuMDZcuwNcdQkxXYLvfVD4Of6JbiUM7vSrrSa2dEMIZcMUgZMXLcptnro0wxYnkKZAmQnZMRyXiSFKNkpGcEsLxNeTOGcTLxvIRbnLPaINPNGOaUDOutt_0aN9dphwCTYDunS9qgc9VsfsPP0w4aGhgbpfvfV2U80-903XQ3eBrtB6lAtqeoNrYZ1b9AcDys3rNCF7QU5q9XS4-Rvj8nr_d3L_DFZPD88zW8Xic6BhSRHEKzmdR6nKKsMK4VZXggmlOKK1aqEWaXNrOYcqooL5JkwCqspgJgWOudjcnX8G4Xf1-iDbIe166OkZCUT0XQB04jiR5R2g_cOa7lytlNuKxnIQ6qylb-pykOqEkoZU42smyMLo4GNRSe9tthrNNahDtIM9l_-DyCHhH4</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Souza, Matheus</creator><creator>Griggs, Wynita M.</creator><creator>Ordóñez-Hurtado, Rodrigo H.</creator><creator>Sajja, S. Shravan K.</creator><creator>Lanzon, Alexander</creator><creator>Shorten, Robert N.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140901</creationdate><title>Characterising discrete-time linear systems with the “mixed” positive real and bounded real property</title><author>Souza, Matheus ; Griggs, Wynita M. ; Ordóñez-Hurtado, Rodrigo H. ; Sajja, S. Shravan K. ; Lanzon, Alexander ; Shorten, Robert N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-4e061f3f461f67b2ebae245616aa3a1fa709bcd9f330bb36e326daeb800685c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Behavior</topic><topic>Discrete-time system</topic><topic>Eigenvalues</topic><topic>Finite frequency bounded realness</topic><topic>Finite frequency positive realness</topic><topic>Linear system</topic><topic>Methods</topic><topic>Stability</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Souza, Matheus</creatorcontrib><creatorcontrib>Griggs, Wynita M.</creatorcontrib><creatorcontrib>Ordóñez-Hurtado, Rodrigo H.</creatorcontrib><creatorcontrib>Sajja, S. Shravan K.</creatorcontrib><creatorcontrib>Lanzon, Alexander</creatorcontrib><creatorcontrib>Shorten, Robert N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>European journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souza, Matheus</au><au>Griggs, Wynita M.</au><au>Ordóñez-Hurtado, Rodrigo H.</au><au>Sajja, S. Shravan K.</au><au>Lanzon, Alexander</au><au>Shorten, Robert N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterising discrete-time linear systems with the “mixed” positive real and bounded real property</atitle><jtitle>European journal of control</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>20</volume><issue>5</issue><spage>259</spage><epage>268</epage><pages>259-268</pages><issn>0947-3580</issn><eissn>1435-5671</eissn><abstract>In this paper, we present characterisations of linear, shift-invariant, discrete-time systems that exhibit mixtures of small gain-type properties and positive real-type behaviours in a certain manner. These “mixed” systems are already fairly well characterised in the continuous-time domain, but the widespread adoption of digital controllers makes it necessary to verify whether commonly used discretisation procedures preserve the characteristic of “mixedness”. First, we analyse the effects of classical discretisation methods on the “mixed” property using Nyquist methods. A frequency domain feedback stability result is then presented. Finally, we develop a spectral-based characterisation of “mixed” discrete-time systems which provides a practical computational test that can also be applied to the MIMO case. Several examples validate the developed theory.</abstract><cop>Philadelphia</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ejcon.2014.07.002</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-3580
ispartof European journal of control, 2014-09, Vol.20 (5), p.259-268
issn 0947-3580
1435-5671
language eng
recordid cdi_proquest_journals_1716313508
source ProQuest Central UK/Ireland; Alma/SFX Local Collection
subjects Behavior
Discrete-time system
Eigenvalues
Finite frequency bounded realness
Finite frequency positive realness
Linear system
Methods
Stability
Studies
title Characterising discrete-time linear systems with the “mixed” positive real and bounded real property
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterising%20discrete-time%20linear%20systems%20with%20the%20%E2%80%9Cmixed%E2%80%9D%20positive%20real%20and%20bounded%20real%20property&rft.jtitle=European%20journal%20of%20control&rft.au=Souza,%20Matheus&rft.date=2014-09-01&rft.volume=20&rft.issue=5&rft.spage=259&rft.epage=268&rft.pages=259-268&rft.issn=0947-3580&rft.eissn=1435-5671&rft_id=info:doi/10.1016/j.ejcon.2014.07.002&rft_dat=%3Cproquest_cross%3E3817933131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1716313508&rft_id=info:pmid/&rft_els_id=S0947358014000582&rfr_iscdi=true