Characterising discrete-time linear systems with the “mixed” positive real and bounded real property
In this paper, we present characterisations of linear, shift-invariant, discrete-time systems that exhibit mixtures of small gain-type properties and positive real-type behaviours in a certain manner. These “mixed” systems are already fairly well characterised in the continuous-time domain, but the...
Gespeichert in:
Veröffentlicht in: | European journal of control 2014-09, Vol.20 (5), p.259-268 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 268 |
---|---|
container_issue | 5 |
container_start_page | 259 |
container_title | European journal of control |
container_volume | 20 |
creator | Souza, Matheus Griggs, Wynita M. Ordóñez-Hurtado, Rodrigo H. Sajja, S. Shravan K. Lanzon, Alexander Shorten, Robert N. |
description | In this paper, we present characterisations of linear, shift-invariant, discrete-time systems that exhibit mixtures of small gain-type properties and positive real-type behaviours in a certain manner. These “mixed” systems are already fairly well characterised in the continuous-time domain, but the widespread adoption of digital controllers makes it necessary to verify whether commonly used discretisation procedures preserve the characteristic of “mixedness”. First, we analyse the effects of classical discretisation methods on the “mixed” property using Nyquist methods. A frequency domain feedback stability result is then presented. Finally, we develop a spectral-based characterisation of “mixed” discrete-time systems which provides a practical computational test that can also be applied to the MIMO case. Several examples validate the developed theory. |
doi_str_mv | 10.1016/j.ejcon.2014.07.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1716313508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0947358014000582</els_id><sourcerecordid>3817933131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-4e061f3f461f67b2ebae245616aa3a1fa709bcd9f330bb36e326daeb800685c43</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVKVfwMUS54R1nDjtgQOqeEmVuMDZcuwNcdQkxXYLvfVD4Of6JbiUM7vSrrSa2dEMIZcMUgZMXLcptnro0wxYnkKZAmQnZMRyXiSFKNkpGcEsLxNeTOGcTLxvIRbnLPaINPNGOaUDOutt_0aN9dphwCTYDunS9qgc9VsfsPP0w4aGhgbpfvfV2U80-903XQ3eBrtB6lAtqeoNrYZ1b9AcDys3rNCF7QU5q9XS4-Rvj8nr_d3L_DFZPD88zW8Xic6BhSRHEKzmdR6nKKsMK4VZXggmlOKK1aqEWaXNrOYcqooL5JkwCqspgJgWOudjcnX8G4Xf1-iDbIe166OkZCUT0XQB04jiR5R2g_cOa7lytlNuKxnIQ6qylb-pykOqEkoZU42smyMLo4GNRSe9tthrNNahDtIM9l_-DyCHhH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1716313508</pqid></control><display><type>article</type><title>Characterising discrete-time linear systems with the “mixed” positive real and bounded real property</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><creator>Souza, Matheus ; Griggs, Wynita M. ; Ordóñez-Hurtado, Rodrigo H. ; Sajja, S. Shravan K. ; Lanzon, Alexander ; Shorten, Robert N.</creator><creatorcontrib>Souza, Matheus ; Griggs, Wynita M. ; Ordóñez-Hurtado, Rodrigo H. ; Sajja, S. Shravan K. ; Lanzon, Alexander ; Shorten, Robert N.</creatorcontrib><description>In this paper, we present characterisations of linear, shift-invariant, discrete-time systems that exhibit mixtures of small gain-type properties and positive real-type behaviours in a certain manner. These “mixed” systems are already fairly well characterised in the continuous-time domain, but the widespread adoption of digital controllers makes it necessary to verify whether commonly used discretisation procedures preserve the characteristic of “mixedness”. First, we analyse the effects of classical discretisation methods on the “mixed” property using Nyquist methods. A frequency domain feedback stability result is then presented. Finally, we develop a spectral-based characterisation of “mixed” discrete-time systems which provides a practical computational test that can also be applied to the MIMO case. Several examples validate the developed theory.</description><identifier>ISSN: 0947-3580</identifier><identifier>EISSN: 1435-5671</identifier><identifier>DOI: 10.1016/j.ejcon.2014.07.002</identifier><language>eng</language><publisher>Philadelphia: Elsevier Ltd</publisher><subject>Behavior ; Discrete-time system ; Eigenvalues ; Finite frequency bounded realness ; Finite frequency positive realness ; Linear system ; Methods ; Stability ; Studies</subject><ispartof>European journal of control, 2014-09, Vol.20 (5), p.259-268</ispartof><rights>2014 European Control Association</rights><rights>Copyright Elsevier Limited 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-4e061f3f461f67b2ebae245616aa3a1fa709bcd9f330bb36e326daeb800685c43</citedby><cites>FETCH-LOGICAL-c401t-4e061f3f461f67b2ebae245616aa3a1fa709bcd9f330bb36e326daeb800685c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1716313508?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Souza, Matheus</creatorcontrib><creatorcontrib>Griggs, Wynita M.</creatorcontrib><creatorcontrib>Ordóñez-Hurtado, Rodrigo H.</creatorcontrib><creatorcontrib>Sajja, S. Shravan K.</creatorcontrib><creatorcontrib>Lanzon, Alexander</creatorcontrib><creatorcontrib>Shorten, Robert N.</creatorcontrib><title>Characterising discrete-time linear systems with the “mixed” positive real and bounded real property</title><title>European journal of control</title><description>In this paper, we present characterisations of linear, shift-invariant, discrete-time systems that exhibit mixtures of small gain-type properties and positive real-type behaviours in a certain manner. These “mixed” systems are already fairly well characterised in the continuous-time domain, but the widespread adoption of digital controllers makes it necessary to verify whether commonly used discretisation procedures preserve the characteristic of “mixedness”. First, we analyse the effects of classical discretisation methods on the “mixed” property using Nyquist methods. A frequency domain feedback stability result is then presented. Finally, we develop a spectral-based characterisation of “mixed” discrete-time systems which provides a practical computational test that can also be applied to the MIMO case. Several examples validate the developed theory.</description><subject>Behavior</subject><subject>Discrete-time system</subject><subject>Eigenvalues</subject><subject>Finite frequency bounded realness</subject><subject>Finite frequency positive realness</subject><subject>Linear system</subject><subject>Methods</subject><subject>Stability</subject><subject>Studies</subject><issn>0947-3580</issn><issn>1435-5671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMtOwzAQtBBIVKVfwMUS54R1nDjtgQOqeEmVuMDZcuwNcdQkxXYLvfVD4Of6JbiUM7vSrrSa2dEMIZcMUgZMXLcptnro0wxYnkKZAmQnZMRyXiSFKNkpGcEsLxNeTOGcTLxvIRbnLPaINPNGOaUDOutt_0aN9dphwCTYDunS9qgc9VsfsPP0w4aGhgbpfvfV2U80-903XQ3eBrtB6lAtqeoNrYZ1b9AcDys3rNCF7QU5q9XS4-Rvj8nr_d3L_DFZPD88zW8Xic6BhSRHEKzmdR6nKKsMK4VZXggmlOKK1aqEWaXNrOYcqooL5JkwCqspgJgWOudjcnX8G4Xf1-iDbIe166OkZCUT0XQB04jiR5R2g_cOa7lytlNuKxnIQ6qylb-pykOqEkoZU42smyMLo4GNRSe9tthrNNahDtIM9l_-DyCHhH4</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Souza, Matheus</creator><creator>Griggs, Wynita M.</creator><creator>Ordóñez-Hurtado, Rodrigo H.</creator><creator>Sajja, S. Shravan K.</creator><creator>Lanzon, Alexander</creator><creator>Shorten, Robert N.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140901</creationdate><title>Characterising discrete-time linear systems with the “mixed” positive real and bounded real property</title><author>Souza, Matheus ; Griggs, Wynita M. ; Ordóñez-Hurtado, Rodrigo H. ; Sajja, S. Shravan K. ; Lanzon, Alexander ; Shorten, Robert N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-4e061f3f461f67b2ebae245616aa3a1fa709bcd9f330bb36e326daeb800685c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Behavior</topic><topic>Discrete-time system</topic><topic>Eigenvalues</topic><topic>Finite frequency bounded realness</topic><topic>Finite frequency positive realness</topic><topic>Linear system</topic><topic>Methods</topic><topic>Stability</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Souza, Matheus</creatorcontrib><creatorcontrib>Griggs, Wynita M.</creatorcontrib><creatorcontrib>Ordóñez-Hurtado, Rodrigo H.</creatorcontrib><creatorcontrib>Sajja, S. Shravan K.</creatorcontrib><creatorcontrib>Lanzon, Alexander</creatorcontrib><creatorcontrib>Shorten, Robert N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>European journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souza, Matheus</au><au>Griggs, Wynita M.</au><au>Ordóñez-Hurtado, Rodrigo H.</au><au>Sajja, S. Shravan K.</au><au>Lanzon, Alexander</au><au>Shorten, Robert N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterising discrete-time linear systems with the “mixed” positive real and bounded real property</atitle><jtitle>European journal of control</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>20</volume><issue>5</issue><spage>259</spage><epage>268</epage><pages>259-268</pages><issn>0947-3580</issn><eissn>1435-5671</eissn><abstract>In this paper, we present characterisations of linear, shift-invariant, discrete-time systems that exhibit mixtures of small gain-type properties and positive real-type behaviours in a certain manner. These “mixed” systems are already fairly well characterised in the continuous-time domain, but the widespread adoption of digital controllers makes it necessary to verify whether commonly used discretisation procedures preserve the characteristic of “mixedness”. First, we analyse the effects of classical discretisation methods on the “mixed” property using Nyquist methods. A frequency domain feedback stability result is then presented. Finally, we develop a spectral-based characterisation of “mixed” discrete-time systems which provides a practical computational test that can also be applied to the MIMO case. Several examples validate the developed theory.</abstract><cop>Philadelphia</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ejcon.2014.07.002</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-3580 |
ispartof | European journal of control, 2014-09, Vol.20 (5), p.259-268 |
issn | 0947-3580 1435-5671 |
language | eng |
recordid | cdi_proquest_journals_1716313508 |
source | ProQuest Central UK/Ireland; Alma/SFX Local Collection |
subjects | Behavior Discrete-time system Eigenvalues Finite frequency bounded realness Finite frequency positive realness Linear system Methods Stability Studies |
title | Characterising discrete-time linear systems with the “mixed” positive real and bounded real property |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterising%20discrete-time%20linear%20systems%20with%20the%20%E2%80%9Cmixed%E2%80%9D%20positive%20real%20and%20bounded%20real%20property&rft.jtitle=European%20journal%20of%20control&rft.au=Souza,%20Matheus&rft.date=2014-09-01&rft.volume=20&rft.issue=5&rft.spage=259&rft.epage=268&rft.pages=259-268&rft.issn=0947-3580&rft.eissn=1435-5671&rft_id=info:doi/10.1016/j.ejcon.2014.07.002&rft_dat=%3Cproquest_cross%3E3817933131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1716313508&rft_id=info:pmid/&rft_els_id=S0947358014000582&rfr_iscdi=true |