In vivo dosimetry in intraoperative electron radiotherapy: microMOSFETs, radiochromic films and a general-purpose linac

Introduction In vivo dosimetry is desirable for the verification, recording, and eventual correction of treatment in intraoperative electron radiotherapy (IOERT). Our aim is to share our experience of metal oxide semiconductor field–effect transistors (MOSFETs) and radiochromic films with patients u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Strahlentherapie und Onkologie 2014-10, Vol.190 (11), p.1060-1065
Hauptverfasser: López-Tarjuelo, Juan, Bouché-Babiloni, Ana, Morillo-Macías, Virginia, de Marco-Blancas, Noelia, Santos-Serra, Agustín, Quirós-Higueras, Juan David, Ferrer-Albiach, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1065
container_issue 11
container_start_page 1060
container_title Strahlentherapie und Onkologie
container_volume 190
creator López-Tarjuelo, Juan
Bouché-Babiloni, Ana
Morillo-Macías, Virginia
de Marco-Blancas, Noelia
Santos-Serra, Agustín
Quirós-Higueras, Juan David
Ferrer-Albiach, Carlos
description Introduction In vivo dosimetry is desirable for the verification, recording, and eventual correction of treatment in intraoperative electron radiotherapy (IOERT). Our aim is to share our experience of metal oxide semiconductor field–effect transistors (MOSFETs) and radiochromic films with patients undergoing IOERT using a general-purpose linac. Materials and methods We used MOSFETs inserted into sterile bronchus catheters and radiochromic films that were cut, digitized, and sterilized by means of gas plasma. In all, 59 measurements were taken from 27 patients involving 15 primary tumors (seven breast and eight non-breast tumors) and 12 relapses. Data were subjected to an outliers’ analysis and classified according to their compatibility with the relevant doses. Associations were sought regarding the type of detector, breast and non-breast irradiation, and the radiation oncologist’s assessment of the difficulty of detector placement. At the same time, 19 measurements were carried out at the tumor bed with both detectors. Results MOSFET measurements (   = 93.5 %, s D   =  6.5 %) were not significantly shifted from film measurements (   =  96.0 %, s D   =  5.5 %; p   =  0.109), and no associations were found ( p  = 0.526, p  = 0.295,  and p  = 0.501, respectively). As regards measurements performed at the tumor bed with both detectors, MOSFET measurements (   =  95.0 %, s D   =  5.4 % were not significantly shifted from film measurements (   =  96.4 %, s D   =  5.0 %; p   =  0.363). Conclusion In vivo dosimetry can produce satisfactory results at every studied location with a general-purpose linac. Detector choice should depend on user factors, not on the detector performance itself. Surgical team collaboration is crucial to success.
doi_str_mv 10.1007/s00066-014-0689-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1713996556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3813138171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-235a3fcd67260f41f8bedcf4cd1ddb742501c51f7ce65add0c27a8a221779da03</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMotlY_gBdZ8BydyWaTzVGK_6DgRcFbSJOsbml312Rb2G9vylbxIgwMzLx5j_kRcolwgwDyNgKAEBSQUxClosMRmSLPFQWl3o_JFFAqKrEoJ-QsxhUACq74KZkwrkTBpZoS9dxku3rXZq6N9cb3YcjqJlUfTNv5YPp65zO_9rYPbZMF4-q2_0zzbjgnJ5VZR39x6DPy9nD_On-ii5fH5_ndgtqc8Z6yvDB5ZZ2QTEDFsSqX3tmKW4fOLSVnBaAtsJLWi8I4B5ZJUxrGUErlDOQzcj36dqH92vrY61W7DU2K1CgxV-mTQiQVjiob2hiDr3QX6o0Jg0bQe1h6hKUTLL2HpYd0c3Vw3i433v1e_NBJAjYKYlo1Hz78if7X9RtgVnXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1713996556</pqid></control><display><type>article</type><title>In vivo dosimetry in intraoperative electron radiotherapy: microMOSFETs, radiochromic films and a general-purpose linac</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>López-Tarjuelo, Juan ; Bouché-Babiloni, Ana ; Morillo-Macías, Virginia ; de Marco-Blancas, Noelia ; Santos-Serra, Agustín ; Quirós-Higueras, Juan David ; Ferrer-Albiach, Carlos</creator><creatorcontrib>López-Tarjuelo, Juan ; Bouché-Babiloni, Ana ; Morillo-Macías, Virginia ; de Marco-Blancas, Noelia ; Santos-Serra, Agustín ; Quirós-Higueras, Juan David ; Ferrer-Albiach, Carlos</creatorcontrib><description>Introduction In vivo dosimetry is desirable for the verification, recording, and eventual correction of treatment in intraoperative electron radiotherapy (IOERT). Our aim is to share our experience of metal oxide semiconductor field–effect transistors (MOSFETs) and radiochromic films with patients undergoing IOERT using a general-purpose linac. Materials and methods We used MOSFETs inserted into sterile bronchus catheters and radiochromic films that were cut, digitized, and sterilized by means of gas plasma. In all, 59 measurements were taken from 27 patients involving 15 primary tumors (seven breast and eight non-breast tumors) and 12 relapses. Data were subjected to an outliers’ analysis and classified according to their compatibility with the relevant doses. Associations were sought regarding the type of detector, breast and non-breast irradiation, and the radiation oncologist’s assessment of the difficulty of detector placement. At the same time, 19 measurements were carried out at the tumor bed with both detectors. Results MOSFET measurements (   = 93.5 %, s D   =  6.5 %) were not significantly shifted from film measurements (   =  96.0 %, s D   =  5.5 %; p   =  0.109), and no associations were found ( p  = 0.526, p  = 0.295,  and p  = 0.501, respectively). As regards measurements performed at the tumor bed with both detectors, MOSFET measurements (   =  95.0 %, s D   =  5.4 % were not significantly shifted from film measurements (   =  96.4 %, s D   =  5.0 %; p   =  0.363). Conclusion In vivo dosimetry can produce satisfactory results at every studied location with a general-purpose linac. Detector choice should depend on user factors, not on the detector performance itself. Surgical team collaboration is crucial to success.</description><identifier>ISSN: 0179-7158</identifier><identifier>EISSN: 1439-099X</identifier><identifier>DOI: 10.1007/s00066-014-0689-y</identifier><identifier>PMID: 24965479</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Electrons - therapeutic use ; Equipment Design ; Equipment Failure Analysis ; Film Dosimetry - instrumentation ; Humans ; Intraoperative Care - instrumentation ; Medicine ; Medicine &amp; Public Health ; Neoplasms - radiotherapy ; Oncology ; Original Article ; Particle Accelerators - instrumentation ; Radiotherapy ; Radiotherapy, Adjuvant - instrumentation ; Reproducibility of Results ; Sensitivity and Specificity ; Transistors, Electronic</subject><ispartof>Strahlentherapie und Onkologie, 2014-10, Vol.190 (11), p.1060-1065</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer Heidelberg Berlin 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c324t-235a3fcd67260f41f8bedcf4cd1ddb742501c51f7ce65add0c27a8a221779da03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00066-014-0689-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00066-014-0689-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24965479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>López-Tarjuelo, Juan</creatorcontrib><creatorcontrib>Bouché-Babiloni, Ana</creatorcontrib><creatorcontrib>Morillo-Macías, Virginia</creatorcontrib><creatorcontrib>de Marco-Blancas, Noelia</creatorcontrib><creatorcontrib>Santos-Serra, Agustín</creatorcontrib><creatorcontrib>Quirós-Higueras, Juan David</creatorcontrib><creatorcontrib>Ferrer-Albiach, Carlos</creatorcontrib><title>In vivo dosimetry in intraoperative electron radiotherapy: microMOSFETs, radiochromic films and a general-purpose linac</title><title>Strahlentherapie und Onkologie</title><addtitle>Strahlenther Onkol</addtitle><addtitle>Strahlenther Onkol</addtitle><description>Introduction In vivo dosimetry is desirable for the verification, recording, and eventual correction of treatment in intraoperative electron radiotherapy (IOERT). Our aim is to share our experience of metal oxide semiconductor field–effect transistors (MOSFETs) and radiochromic films with patients undergoing IOERT using a general-purpose linac. Materials and methods We used MOSFETs inserted into sterile bronchus catheters and radiochromic films that were cut, digitized, and sterilized by means of gas plasma. In all, 59 measurements were taken from 27 patients involving 15 primary tumors (seven breast and eight non-breast tumors) and 12 relapses. Data were subjected to an outliers’ analysis and classified according to their compatibility with the relevant doses. Associations were sought regarding the type of detector, breast and non-breast irradiation, and the radiation oncologist’s assessment of the difficulty of detector placement. At the same time, 19 measurements were carried out at the tumor bed with both detectors. Results MOSFET measurements (   = 93.5 %, s D   =  6.5 %) were not significantly shifted from film measurements (   =  96.0 %, s D   =  5.5 %; p   =  0.109), and no associations were found ( p  = 0.526, p  = 0.295,  and p  = 0.501, respectively). As regards measurements performed at the tumor bed with both detectors, MOSFET measurements (   =  95.0 %, s D   =  5.4 % were not significantly shifted from film measurements (   =  96.4 %, s D   =  5.0 %; p   =  0.363). Conclusion In vivo dosimetry can produce satisfactory results at every studied location with a general-purpose linac. Detector choice should depend on user factors, not on the detector performance itself. Surgical team collaboration is crucial to success.</description><subject>Electrons - therapeutic use</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Film Dosimetry - instrumentation</subject><subject>Humans</subject><subject>Intraoperative Care - instrumentation</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neoplasms - radiotherapy</subject><subject>Oncology</subject><subject>Original Article</subject><subject>Particle Accelerators - instrumentation</subject><subject>Radiotherapy</subject><subject>Radiotherapy, Adjuvant - instrumentation</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Transistors, Electronic</subject><issn>0179-7158</issn><issn>1439-099X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE9LAzEQxYMotlY_gBdZ8BydyWaTzVGK_6DgRcFbSJOsbml312Rb2G9vylbxIgwMzLx5j_kRcolwgwDyNgKAEBSQUxClosMRmSLPFQWl3o_JFFAqKrEoJ-QsxhUACq74KZkwrkTBpZoS9dxku3rXZq6N9cb3YcjqJlUfTNv5YPp65zO_9rYPbZMF4-q2_0zzbjgnJ5VZR39x6DPy9nD_On-ii5fH5_ndgtqc8Z6yvDB5ZZ2QTEDFsSqX3tmKW4fOLSVnBaAtsJLWi8I4B5ZJUxrGUErlDOQzcj36dqH92vrY61W7DU2K1CgxV-mTQiQVjiob2hiDr3QX6o0Jg0bQe1h6hKUTLL2HpYd0c3Vw3i433v1e_NBJAjYKYlo1Hz78if7X9RtgVnXc</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>López-Tarjuelo, Juan</creator><creator>Bouché-Babiloni, Ana</creator><creator>Morillo-Macías, Virginia</creator><creator>de Marco-Blancas, Noelia</creator><creator>Santos-Serra, Agustín</creator><creator>Quirós-Higueras, Juan David</creator><creator>Ferrer-Albiach, Carlos</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20141001</creationdate><title>In vivo dosimetry in intraoperative electron radiotherapy</title><author>López-Tarjuelo, Juan ; Bouché-Babiloni, Ana ; Morillo-Macías, Virginia ; de Marco-Blancas, Noelia ; Santos-Serra, Agustín ; Quirós-Higueras, Juan David ; Ferrer-Albiach, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-235a3fcd67260f41f8bedcf4cd1ddb742501c51f7ce65add0c27a8a221779da03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Electrons - therapeutic use</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Film Dosimetry - instrumentation</topic><topic>Humans</topic><topic>Intraoperative Care - instrumentation</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neoplasms - radiotherapy</topic><topic>Oncology</topic><topic>Original Article</topic><topic>Particle Accelerators - instrumentation</topic><topic>Radiotherapy</topic><topic>Radiotherapy, Adjuvant - instrumentation</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Transistors, Electronic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Tarjuelo, Juan</creatorcontrib><creatorcontrib>Bouché-Babiloni, Ana</creatorcontrib><creatorcontrib>Morillo-Macías, Virginia</creatorcontrib><creatorcontrib>de Marco-Blancas, Noelia</creatorcontrib><creatorcontrib>Santos-Serra, Agustín</creatorcontrib><creatorcontrib>Quirós-Higueras, Juan David</creatorcontrib><creatorcontrib>Ferrer-Albiach, Carlos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Strahlentherapie und Onkologie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Tarjuelo, Juan</au><au>Bouché-Babiloni, Ana</au><au>Morillo-Macías, Virginia</au><au>de Marco-Blancas, Noelia</au><au>Santos-Serra, Agustín</au><au>Quirós-Higueras, Juan David</au><au>Ferrer-Albiach, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo dosimetry in intraoperative electron radiotherapy: microMOSFETs, radiochromic films and a general-purpose linac</atitle><jtitle>Strahlentherapie und Onkologie</jtitle><stitle>Strahlenther Onkol</stitle><addtitle>Strahlenther Onkol</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>190</volume><issue>11</issue><spage>1060</spage><epage>1065</epage><pages>1060-1065</pages><issn>0179-7158</issn><eissn>1439-099X</eissn><abstract>Introduction In vivo dosimetry is desirable for the verification, recording, and eventual correction of treatment in intraoperative electron radiotherapy (IOERT). Our aim is to share our experience of metal oxide semiconductor field–effect transistors (MOSFETs) and radiochromic films with patients undergoing IOERT using a general-purpose linac. Materials and methods We used MOSFETs inserted into sterile bronchus catheters and radiochromic films that were cut, digitized, and sterilized by means of gas plasma. In all, 59 measurements were taken from 27 patients involving 15 primary tumors (seven breast and eight non-breast tumors) and 12 relapses. Data were subjected to an outliers’ analysis and classified according to their compatibility with the relevant doses. Associations were sought regarding the type of detector, breast and non-breast irradiation, and the radiation oncologist’s assessment of the difficulty of detector placement. At the same time, 19 measurements were carried out at the tumor bed with both detectors. Results MOSFET measurements (   = 93.5 %, s D   =  6.5 %) were not significantly shifted from film measurements (   =  96.0 %, s D   =  5.5 %; p   =  0.109), and no associations were found ( p  = 0.526, p  = 0.295,  and p  = 0.501, respectively). As regards measurements performed at the tumor bed with both detectors, MOSFET measurements (   =  95.0 %, s D   =  5.4 % were not significantly shifted from film measurements (   =  96.4 %, s D   =  5.0 %; p   =  0.363). Conclusion In vivo dosimetry can produce satisfactory results at every studied location with a general-purpose linac. Detector choice should depend on user factors, not on the detector performance itself. Surgical team collaboration is crucial to success.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>24965479</pmid><doi>10.1007/s00066-014-0689-y</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0179-7158
ispartof Strahlentherapie und Onkologie, 2014-10, Vol.190 (11), p.1060-1065
issn 0179-7158
1439-099X
language eng
recordid cdi_proquest_journals_1713996556
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Electrons - therapeutic use
Equipment Design
Equipment Failure Analysis
Film Dosimetry - instrumentation
Humans
Intraoperative Care - instrumentation
Medicine
Medicine & Public Health
Neoplasms - radiotherapy
Oncology
Original Article
Particle Accelerators - instrumentation
Radiotherapy
Radiotherapy, Adjuvant - instrumentation
Reproducibility of Results
Sensitivity and Specificity
Transistors, Electronic
title In vivo dosimetry in intraoperative electron radiotherapy: microMOSFETs, radiochromic films and a general-purpose linac
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20dosimetry%20in%20intraoperative%20electron%20radiotherapy:%20microMOSFETs,%20radiochromic%20films%20and%20a%20general-purpose%20linac&rft.jtitle=Strahlentherapie%20und%20Onkologie&rft.au=L%C3%B3pez-Tarjuelo,%20Juan&rft.date=2014-10-01&rft.volume=190&rft.issue=11&rft.spage=1060&rft.epage=1065&rft.pages=1060-1065&rft.issn=0179-7158&rft.eissn=1439-099X&rft_id=info:doi/10.1007/s00066-014-0689-y&rft_dat=%3Cproquest_cross%3E3813138171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1713996556&rft_id=info:pmid/24965479&rfr_iscdi=true