Numerical calculations of two-dimensional large Prandtl number convection in a box

Convection from an isolated heat source in a chamber has been previously studied numerically, experimentally and analytically. These have not covered long time spans for wide ranges of Rayleigh number Ra and Prandtl number Pr. Numerical calculations of constant viscosity convection partially fill th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2013-08, Vol.729, p.584-602
Hauptverfasser: Whitehead, J. A., Cotel, A., Hart, S., Lithgow-Bertelloni, C., Newsome, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 602
container_issue
container_start_page 584
container_title Journal of fluid mechanics
container_volume 729
creator Whitehead, J. A.
Cotel, A.
Hart, S.
Lithgow-Bertelloni, C.
Newsome, W.
description Convection from an isolated heat source in a chamber has been previously studied numerically, experimentally and analytically. These have not covered long time spans for wide ranges of Rayleigh number Ra and Prandtl number Pr. Numerical calculations of constant viscosity convection partially fill the gap in the ranges $\mathit{Ra}= 1{0}^{3} {{\unicode{x2013}}}1{0}^{6} $ and $\mathit{Pr}= 1, 10, 100, 1000$ and $\infty $ . Calculations begin with cold fluid everywhere and localized hot temperature at the centre of the bottom of a square two-dimensional chamber. For $\mathit{Ra}\gt 20\hspace{0.167em} 000$ , temperature increases above the hot bottom and forms a rising plume head. The head has small internal recirculation and minor outward conduction of heat during ascent. The head approaches the top, flattens, splits and the two remnants are swept to the sidewalls and diffused away. The maximum velocity and the top centre heat flux climb to maxima during head ascent and then adjust toward constant values. Two steady cells are separated by a vertical thermal conduit. This sequence is followed for every value of $Pr$ number, although lower Pr convection lags in time. For $\mathit{Ra}\lt 20\hspace{0.167em} 000$ there is no plume head, and no streamfunction and heat flux maxima with time. For sufficiently large Ra and all values of Pr, an oscillation develops at roughly $t= 0. 2$ , with the two cells alternately strengthening and weakening. This changes to a steady flow with two unequal cells that at roughly $t= 0. 5$ develops a second oscillation.
doi_str_mv 10.1017/jfm.2013.330
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1710619576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2013_330</cupid><sourcerecordid>3802044491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-f9e9c3771ff3ce913ba18a182a437579ded328064ffc39b413f418357715d2933</originalsourceid><addsrcrecordid>eNptkE9LBCEchiUK2rZufQAhujWTP3XG9RhLW8FSEXUWx9Fllplx05n-fPtcdokOgSLo877qg9A5kBwIiOu163JKgOWMkQM0AV7KTJS8OEQTQijNACg5RicxrkmiiBQT9PI4djY0Rrc4TTO2emh8H7F3ePj0Wd10to9pJ523Oqwsfg66r4cW92NX2YCN7z-s2WZw02ONK_91io6cbqM9269T9La4fZ3fZ8unu4f5zTIzjNEhc9JKw4QA55ixElilYZYG1ZyJQsja1ozOSMmdM0xWHJjjMGNFShQ1lYxN0cWudxP8-2jjoNZ-DOmlUYEAUoIsRJmoqx1lgo8xWKc2oel0-FZA1NaaStbU1ppK1hJ-uS_VMQlx6bemib8ZmnRKzmXi8n2t7qrQ1Cv75_b_in8AbCZ7Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710619576</pqid></control><display><type>article</type><title>Numerical calculations of two-dimensional large Prandtl number convection in a box</title><source>Cambridge Journals</source><creator>Whitehead, J. A. ; Cotel, A. ; Hart, S. ; Lithgow-Bertelloni, C. ; Newsome, W.</creator><creatorcontrib>Whitehead, J. A. ; Cotel, A. ; Hart, S. ; Lithgow-Bertelloni, C. ; Newsome, W.</creatorcontrib><description>Convection from an isolated heat source in a chamber has been previously studied numerically, experimentally and analytically. These have not covered long time spans for wide ranges of Rayleigh number Ra and Prandtl number Pr. Numerical calculations of constant viscosity convection partially fill the gap in the ranges $\mathit{Ra}= 1{0}^{3} {{\unicode{x2013}}}1{0}^{6} $ and $\mathit{Pr}= 1, 10, 100, 1000$ and $\infty $ . Calculations begin with cold fluid everywhere and localized hot temperature at the centre of the bottom of a square two-dimensional chamber. For $\mathit{Ra}\gt 20\hspace{0.167em} 000$ , temperature increases above the hot bottom and forms a rising plume head. The head has small internal recirculation and minor outward conduction of heat during ascent. The head approaches the top, flattens, splits and the two remnants are swept to the sidewalls and diffused away. The maximum velocity and the top centre heat flux climb to maxima during head ascent and then adjust toward constant values. Two steady cells are separated by a vertical thermal conduit. This sequence is followed for every value of $Pr$ number, although lower Pr convection lags in time. For $\mathit{Ra}\lt 20\hspace{0.167em} 000$ there is no plume head, and no streamfunction and heat flux maxima with time. For sufficiently large Ra and all values of Pr, an oscillation develops at roughly $t= 0. 2$ , with the two cells alternately strengthening and weakening. This changes to a steady flow with two unequal cells that at roughly $t= 0. 5$ develops a second oscillation.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2013.330</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary layer ; Convection ; Crystalline rocks ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fluid mechanics ; Igneous and metamorphic rocks petrology, volcanic processes, magmas ; Mathematical models ; Steady flow</subject><ispartof>Journal of fluid mechanics, 2013-08, Vol.729, p.584-602</ispartof><rights>2013 Cambridge University Press</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-f9e9c3771ff3ce913ba18a182a437579ded328064ffc39b413f418357715d2933</citedby><cites>FETCH-LOGICAL-c332t-f9e9c3771ff3ce913ba18a182a437579ded328064ffc39b413f418357715d2933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112013003303/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27649449$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Whitehead, J. A.</creatorcontrib><creatorcontrib>Cotel, A.</creatorcontrib><creatorcontrib>Hart, S.</creatorcontrib><creatorcontrib>Lithgow-Bertelloni, C.</creatorcontrib><creatorcontrib>Newsome, W.</creatorcontrib><title>Numerical calculations of two-dimensional large Prandtl number convection in a box</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Convection from an isolated heat source in a chamber has been previously studied numerically, experimentally and analytically. These have not covered long time spans for wide ranges of Rayleigh number Ra and Prandtl number Pr. Numerical calculations of constant viscosity convection partially fill the gap in the ranges $\mathit{Ra}= 1{0}^{3} {{\unicode{x2013}}}1{0}^{6} $ and $\mathit{Pr}= 1, 10, 100, 1000$ and $\infty $ . Calculations begin with cold fluid everywhere and localized hot temperature at the centre of the bottom of a square two-dimensional chamber. For $\mathit{Ra}\gt 20\hspace{0.167em} 000$ , temperature increases above the hot bottom and forms a rising plume head. The head has small internal recirculation and minor outward conduction of heat during ascent. The head approaches the top, flattens, splits and the two remnants are swept to the sidewalls and diffused away. The maximum velocity and the top centre heat flux climb to maxima during head ascent and then adjust toward constant values. Two steady cells are separated by a vertical thermal conduit. This sequence is followed for every value of $Pr$ number, although lower Pr convection lags in time. For $\mathit{Ra}\lt 20\hspace{0.167em} 000$ there is no plume head, and no streamfunction and heat flux maxima with time. For sufficiently large Ra and all values of Pr, an oscillation develops at roughly $t= 0. 2$ , with the two cells alternately strengthening and weakening. This changes to a steady flow with two unequal cells that at roughly $t= 0. 5$ develops a second oscillation.</description><subject>Boundary layer</subject><subject>Convection</subject><subject>Crystalline rocks</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fluid mechanics</subject><subject>Igneous and metamorphic rocks petrology, volcanic processes, magmas</subject><subject>Mathematical models</subject><subject>Steady flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE9LBCEchiUK2rZufQAhujWTP3XG9RhLW8FSEXUWx9Fllplx05n-fPtcdokOgSLo877qg9A5kBwIiOu163JKgOWMkQM0AV7KTJS8OEQTQijNACg5RicxrkmiiBQT9PI4djY0Rrc4TTO2emh8H7F3ePj0Wd10to9pJ523Oqwsfg66r4cW92NX2YCN7z-s2WZw02ONK_91io6cbqM9269T9La4fZ3fZ8unu4f5zTIzjNEhc9JKw4QA55ixElilYZYG1ZyJQsja1ozOSMmdM0xWHJjjMGNFShQ1lYxN0cWudxP8-2jjoNZ-DOmlUYEAUoIsRJmoqx1lgo8xWKc2oel0-FZA1NaaStbU1ppK1hJ-uS_VMQlx6bemib8ZmnRKzmXi8n2t7qrQ1Cv75_b_in8AbCZ7Ng</recordid><startdate>20130825</startdate><enddate>20130825</enddate><creator>Whitehead, J. A.</creator><creator>Cotel, A.</creator><creator>Hart, S.</creator><creator>Lithgow-Bertelloni, C.</creator><creator>Newsome, W.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20130825</creationdate><title>Numerical calculations of two-dimensional large Prandtl number convection in a box</title><author>Whitehead, J. A. ; Cotel, A. ; Hart, S. ; Lithgow-Bertelloni, C. ; Newsome, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-f9e9c3771ff3ce913ba18a182a437579ded328064ffc39b413f418357715d2933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundary layer</topic><topic>Convection</topic><topic>Crystalline rocks</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fluid mechanics</topic><topic>Igneous and metamorphic rocks petrology, volcanic processes, magmas</topic><topic>Mathematical models</topic><topic>Steady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitehead, J. A.</creatorcontrib><creatorcontrib>Cotel, A.</creatorcontrib><creatorcontrib>Hart, S.</creatorcontrib><creatorcontrib>Lithgow-Bertelloni, C.</creatorcontrib><creatorcontrib>Newsome, W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitehead, J. A.</au><au>Cotel, A.</au><au>Hart, S.</au><au>Lithgow-Bertelloni, C.</au><au>Newsome, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical calculations of two-dimensional large Prandtl number convection in a box</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2013-08-25</date><risdate>2013</risdate><volume>729</volume><spage>584</spage><epage>602</epage><pages>584-602</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Convection from an isolated heat source in a chamber has been previously studied numerically, experimentally and analytically. These have not covered long time spans for wide ranges of Rayleigh number Ra and Prandtl number Pr. Numerical calculations of constant viscosity convection partially fill the gap in the ranges $\mathit{Ra}= 1{0}^{3} {{\unicode{x2013}}}1{0}^{6} $ and $\mathit{Pr}= 1, 10, 100, 1000$ and $\infty $ . Calculations begin with cold fluid everywhere and localized hot temperature at the centre of the bottom of a square two-dimensional chamber. For $\mathit{Ra}\gt 20\hspace{0.167em} 000$ , temperature increases above the hot bottom and forms a rising plume head. The head has small internal recirculation and minor outward conduction of heat during ascent. The head approaches the top, flattens, splits and the two remnants are swept to the sidewalls and diffused away. The maximum velocity and the top centre heat flux climb to maxima during head ascent and then adjust toward constant values. Two steady cells are separated by a vertical thermal conduit. This sequence is followed for every value of $Pr$ number, although lower Pr convection lags in time. For $\mathit{Ra}\lt 20\hspace{0.167em} 000$ there is no plume head, and no streamfunction and heat flux maxima with time. For sufficiently large Ra and all values of Pr, an oscillation develops at roughly $t= 0. 2$ , with the two cells alternately strengthening and weakening. This changes to a steady flow with two unequal cells that at roughly $t= 0. 5$ develops a second oscillation.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2013.330</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2013-08, Vol.729, p.584-602
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1710619576
source Cambridge Journals
subjects Boundary layer
Convection
Crystalline rocks
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fluid mechanics
Igneous and metamorphic rocks petrology, volcanic processes, magmas
Mathematical models
Steady flow
title Numerical calculations of two-dimensional large Prandtl number convection in a box
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20calculations%20of%20two-dimensional%20large%20Prandtl%20number%20convection%20in%20a%20box&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Whitehead,%20J.%20A.&rft.date=2013-08-25&rft.volume=729&rft.spage=584&rft.epage=602&rft.pages=584-602&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2013.330&rft_dat=%3Cproquest_cross%3E3802044491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710619576&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2013_330&rfr_iscdi=true