Valuing gains in life expectancy: Clarifying some ambiguities

It is well-understood that a given gain in life expectancy can, in principle, be generated by any one of an infinite number of different types of perturbation in an individual's survival fimction. Since it seems unlikely that the typical individual will be indifferent between these various type...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of risk and uncertainty 2015-08, Vol.51 (1), p.1-21
Hauptverfasser: Jones-Lee, Michael, Chilton, Susan, Metcalf, Hugh, Nielsen, Jytte Seested
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 1
container_start_page 1
container_title Journal of risk and uncertainty
container_volume 51
creator Jones-Lee, Michael
Chilton, Susan
Metcalf, Hugh
Nielsen, Jytte Seested
description It is well-understood that a given gain in life expectancy can, in principle, be generated by any one of an infinite number of different types of perturbation in an individual's survival fimction. Since it seems unlikely that the typical individual will be indifferent between these various types of perturbation, the idea that there exists a unique willingness to pay-based Value of a Statistical Life Year (VSLY), even for individuals within a given age-group, appears to be ill-founded. This paper examines the issue from a theoretical perspective. Within the context of a simple multi-period model it transpires that if gains in life expectancy are computed on an undiscounted basis then it will indeed be necessary to adjust the magnitude of the VSLY to accommodate the nature of the perturbation in the survival function, as well as the age of those affected. If, by contrast, gains in life expectancy are computed on an appropriately discounted basis then a unique VSLY will be applicable in all cases.
doi_str_mv 10.1007/s11166-015-9221-8
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1710610826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44131399</jstor_id><sourcerecordid>44131399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-dec6326869aa31f3732ee81b11e2514cfec7cc7156dde4cea58c1c1d2f2560fb3</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI4-gAuh4DqamzRpKriQYfyBATfqNmTSm5Kh045JC87b26EirlzdzTnfhUPIJbAbYKy4TQCgFGUgack5UH1EZiALQVleqGMyY7qUVKpcnZKzlDaMsVJrPSP3H7YZQltntQ1tykKbNcFjhl87dL1t3f4uWzQ2Br8_QKnbYma361APoQ-YzsmJt03Ci587J--Py7fFM129Pr0sHlbUSZA9rdApwZVWpbUCvCgER9SwBkAuIXceXeFcAVJVFeYOrdQOHFTcc6mYX4s5uZ52d7H7HDD1ZtMNsR1fGiiAKWCaq5GCiXKxSymiN7sYtjbuDTBzqGSmSmasZA6VjB4dPjlpZNsa45_lf6SrSdqkvou_X_IcBIiyFN-Q-nOJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710610826</pqid></control><display><type>article</type><title>Valuing gains in life expectancy: Clarifying some ambiguities</title><source>EBSCOhost Business Source Complete</source><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Jones-Lee, Michael ; Chilton, Susan ; Metcalf, Hugh ; Nielsen, Jytte Seested</creator><creatorcontrib>Jones-Lee, Michael ; Chilton, Susan ; Metcalf, Hugh ; Nielsen, Jytte Seested</creatorcontrib><description>It is well-understood that a given gain in life expectancy can, in principle, be generated by any one of an infinite number of different types of perturbation in an individual's survival fimction. Since it seems unlikely that the typical individual will be indifferent between these various types of perturbation, the idea that there exists a unique willingness to pay-based Value of a Statistical Life Year (VSLY), even for individuals within a given age-group, appears to be ill-founded. This paper examines the issue from a theoretical perspective. Within the context of a simple multi-period model it transpires that if gains in life expectancy are computed on an undiscounted basis then it will indeed be necessary to adjust the magnitude of the VSLY to accommodate the nature of the perturbation in the survival function, as well as the age of those affected. If, by contrast, gains in life expectancy are computed on an appropriately discounted basis then a unique VSLY will be applicable in all cases.</description><identifier>ISSN: 0895-5646</identifier><identifier>EISSN: 1573-0476</identifier><identifier>DOI: 10.1007/s11166-015-9221-8</identifier><language>eng</language><publisher>New York: Springer</publisher><subject>Discounts ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Environmental Economics ; Fatalities ; Life expectancy ; Microeconomics ; Operations Research/Decision Theory ; Preferences ; Public health ; Statistical analysis ; Willingness to pay</subject><ispartof>Journal of risk and uncertainty, 2015-08, Vol.51 (1), p.1-21</ispartof><rights>Springer Science+Business Media 2015</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-dec6326869aa31f3732ee81b11e2514cfec7cc7156dde4cea58c1c1d2f2560fb3</citedby><cites>FETCH-LOGICAL-c515t-dec6326869aa31f3732ee81b11e2514cfec7cc7156dde4cea58c1c1d2f2560fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44131399$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44131399$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,27907,27908,41471,42540,51302,58000,58233</link.rule.ids></links><search><creatorcontrib>Jones-Lee, Michael</creatorcontrib><creatorcontrib>Chilton, Susan</creatorcontrib><creatorcontrib>Metcalf, Hugh</creatorcontrib><creatorcontrib>Nielsen, Jytte Seested</creatorcontrib><title>Valuing gains in life expectancy: Clarifying some ambiguities</title><title>Journal of risk and uncertainty</title><addtitle>J Risk Uncertain</addtitle><description>It is well-understood that a given gain in life expectancy can, in principle, be generated by any one of an infinite number of different types of perturbation in an individual's survival fimction. Since it seems unlikely that the typical individual will be indifferent between these various types of perturbation, the idea that there exists a unique willingness to pay-based Value of a Statistical Life Year (VSLY), even for individuals within a given age-group, appears to be ill-founded. This paper examines the issue from a theoretical perspective. Within the context of a simple multi-period model it transpires that if gains in life expectancy are computed on an undiscounted basis then it will indeed be necessary to adjust the magnitude of the VSLY to accommodate the nature of the perturbation in the survival function, as well as the age of those affected. If, by contrast, gains in life expectancy are computed on an appropriately discounted basis then a unique VSLY will be applicable in all cases.</description><subject>Discounts</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Environmental Economics</subject><subject>Fatalities</subject><subject>Life expectancy</subject><subject>Microeconomics</subject><subject>Operations Research/Decision Theory</subject><subject>Preferences</subject><subject>Public health</subject><subject>Statistical analysis</subject><subject>Willingness to pay</subject><issn>0895-5646</issn><issn>1573-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1KxDAURoMoOI4-gAuh4DqamzRpKriQYfyBATfqNmTSm5Kh045JC87b26EirlzdzTnfhUPIJbAbYKy4TQCgFGUgack5UH1EZiALQVleqGMyY7qUVKpcnZKzlDaMsVJrPSP3H7YZQltntQ1tykKbNcFjhl87dL1t3f4uWzQ2Br8_QKnbYma361APoQ-YzsmJt03Ci587J--Py7fFM129Pr0sHlbUSZA9rdApwZVWpbUCvCgER9SwBkAuIXceXeFcAVJVFeYOrdQOHFTcc6mYX4s5uZ52d7H7HDD1ZtMNsR1fGiiAKWCaq5GCiXKxSymiN7sYtjbuDTBzqGSmSmasZA6VjB4dPjlpZNsa45_lf6SrSdqkvou_X_IcBIiyFN-Q-nOJ</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Jones-Lee, Michael</creator><creator>Chilton, Susan</creator><creator>Metcalf, Hugh</creator><creator>Nielsen, Jytte Seested</creator><general>Springer</general><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88G</scope><scope>8AM</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGRYB</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K7.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0O</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20150801</creationdate><title>Valuing gains in life expectancy: Clarifying some ambiguities</title><author>Jones-Lee, Michael ; Chilton, Susan ; Metcalf, Hugh ; Nielsen, Jytte Seested</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-dec6326869aa31f3732ee81b11e2514cfec7cc7156dde4cea58c1c1d2f2560fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Discounts</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Environmental Economics</topic><topic>Fatalities</topic><topic>Life expectancy</topic><topic>Microeconomics</topic><topic>Operations Research/Decision Theory</topic><topic>Preferences</topic><topic>Public health</topic><topic>Statistical analysis</topic><topic>Willingness to pay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones-Lee, Michael</creatorcontrib><creatorcontrib>Chilton, Susan</creatorcontrib><creatorcontrib>Metcalf, Hugh</creatorcontrib><creatorcontrib>Nielsen, Jytte Seested</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Criminal Justice Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Criminology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Criminal Justice Database</collection><collection>Psychology Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of risk and uncertainty</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones-Lee, Michael</au><au>Chilton, Susan</au><au>Metcalf, Hugh</au><au>Nielsen, Jytte Seested</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Valuing gains in life expectancy: Clarifying some ambiguities</atitle><jtitle>Journal of risk and uncertainty</jtitle><stitle>J Risk Uncertain</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>51</volume><issue>1</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>0895-5646</issn><eissn>1573-0476</eissn><abstract>It is well-understood that a given gain in life expectancy can, in principle, be generated by any one of an infinite number of different types of perturbation in an individual's survival fimction. Since it seems unlikely that the typical individual will be indifferent between these various types of perturbation, the idea that there exists a unique willingness to pay-based Value of a Statistical Life Year (VSLY), even for individuals within a given age-group, appears to be ill-founded. This paper examines the issue from a theoretical perspective. Within the context of a simple multi-period model it transpires that if gains in life expectancy are computed on an undiscounted basis then it will indeed be necessary to adjust the magnitude of the VSLY to accommodate the nature of the perturbation in the survival function, as well as the age of those affected. If, by contrast, gains in life expectancy are computed on an appropriately discounted basis then a unique VSLY will be applicable in all cases.</abstract><cop>New York</cop><pub>Springer</pub><doi>10.1007/s11166-015-9221-8</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0895-5646
ispartof Journal of risk and uncertainty, 2015-08, Vol.51 (1), p.1-21
issn 0895-5646
1573-0476
language eng
recordid cdi_proquest_journals_1710610826
source EBSCOhost Business Source Complete; Jstor Complete Legacy; Springer Nature - Complete Springer Journals
subjects Discounts
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Environmental Economics
Fatalities
Life expectancy
Microeconomics
Operations Research/Decision Theory
Preferences
Public health
Statistical analysis
Willingness to pay
title Valuing gains in life expectancy: Clarifying some ambiguities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Valuing%20gains%20in%20life%20expectancy:%20Clarifying%20some%20ambiguities&rft.jtitle=Journal%20of%20risk%20and%20uncertainty&rft.au=Jones-Lee,%20Michael&rft.date=2015-08-01&rft.volume=51&rft.issue=1&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=0895-5646&rft.eissn=1573-0476&rft_id=info:doi/10.1007/s11166-015-9221-8&rft_dat=%3Cjstor_proqu%3E44131399%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710610826&rft_id=info:pmid/&rft_jstor_id=44131399&rfr_iscdi=true