Novel K3V2(PO4)3/C Bundled Nanowires as Superior Sodium-Ion Battery Electrode with Ultrahigh Cycling Stability
Sodium‐ion battery has captured much attention due to the abundant sodium resources and potentially low cost. However, it suffers from poor cycling stability and low diffusion coefficient, which seriously limit its widespread application. Here, K3V2(PO4)3/C bundled nanowires are fabricated usinga fa...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2015-09, Vol.5 (17), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 17 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 5 |
creator | Wang, Xuanpeng Niu, Chaojiang Meng, Jiashen Hu, Ping Xu, Xiaoming Wei, Xiujuan Zhou, Liang Zhao, Kangning Luo, Wen Yan, Mengyu Mai, Liqiang |
description | Sodium‐ion battery has captured much attention due to the abundant sodium resources and potentially low cost. However, it suffers from poor cycling stability and low diffusion coefficient, which seriously limit its widespread application. Here, K3V2(PO4)3/C bundled nanowires are fabricated usinga facile organic acid‐assisted method. With a highly stable framework, nanoporous structure, and conductive carbon coating, the K3V2(PO4)3/C bundled nanowires manifest excellent electrochemical performances in sodium‐ion battery. A stable capacity of 119 mAh g−1 can be achieved at 100 mA g−1. Even at a high current density of 2000 mA g−1, 96.0% of the capacity can be retained after 2000 charge–discharge cycles. Comparing with K3V2(PO4)3/C blocks, the K3V2(PO4)3/C bundled nanowires show significantly improved cycling stability. This work provides a facile and effective approach to enhance the electrochemical performance of sodium‐ion batteries.
K3V2(PO4)3/C bundled nanowires are designed and fabricated using a facile organic acid‐assisted method. Ex situ and in situ X‐ray diffraction (XRD) results indicate that the stable framework of the K3V2(PO4)3/C bundled nanowires is responsible for the excellent cycling stability. Constructing K3V2(PO4)3/C bundled nanowires provides an effective approach to enhance the electrochemical performance for sodium‐ion batteries. |
doi_str_mv | 10.1002/aenm.201500716 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1710259551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3801082781</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2236-81bbfdc0b2dbf9748769083d54ee79d42e95f069eb146f38fb8c9b3d083da3103</originalsourceid><addsrcrecordid>eNo9kM1PwkAQxRujiQS5et7Eix4K-9Hddo-AiEQsBkSPmy27hcXS4nYr9r-3BMNcZiZ5v3mZ53m3CHYRhLgndb7rYogohCFiF14LMRT4LArg5Xkm-NrrlOUWNhVwBAlpeXlc_OgMvJAPfP82Cx5IbwgGVa4yrUAs8-JgrC6BLMGi2mtrCgsWhTLVzp8UORhI57StwSjTK2cLpcHBuA1YZs7KjVlvwLBeZSZfg4WTicmMq2-8q1Rmpe7897a3fBq9D5_96Ww8Gfan_hpjwvwIJUmqVjDBKkl5GEQh4zAiigZah1wFWHOaQsZ1ggKWkihNohVPiDpqJGk-a3t3p7t7W3xXunRiW1Q2bywFChHElFOKGhU_qQ4m07XYW7OTthYIimOm4pipOGcq-qP49bw1rH9iTen075mV9kuwkIRUfMZjQemCzUM4F4_kD7jHeug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710259551</pqid></control><display><type>article</type><title>Novel K3V2(PO4)3/C Bundled Nanowires as Superior Sodium-Ion Battery Electrode with Ultrahigh Cycling Stability</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Xuanpeng ; Niu, Chaojiang ; Meng, Jiashen ; Hu, Ping ; Xu, Xiaoming ; Wei, Xiujuan ; Zhou, Liang ; Zhao, Kangning ; Luo, Wen ; Yan, Mengyu ; Mai, Liqiang</creator><creatorcontrib>Wang, Xuanpeng ; Niu, Chaojiang ; Meng, Jiashen ; Hu, Ping ; Xu, Xiaoming ; Wei, Xiujuan ; Zhou, Liang ; Zhao, Kangning ; Luo, Wen ; Yan, Mengyu ; Mai, Liqiang</creatorcontrib><description>Sodium‐ion battery has captured much attention due to the abundant sodium resources and potentially low cost. However, it suffers from poor cycling stability and low diffusion coefficient, which seriously limit its widespread application. Here, K3V2(PO4)3/C bundled nanowires are fabricated usinga facile organic acid‐assisted method. With a highly stable framework, nanoporous structure, and conductive carbon coating, the K3V2(PO4)3/C bundled nanowires manifest excellent electrochemical performances in sodium‐ion battery. A stable capacity of 119 mAh g−1 can be achieved at 100 mA g−1. Even at a high current density of 2000 mA g−1, 96.0% of the capacity can be retained after 2000 charge–discharge cycles. Comparing with K3V2(PO4)3/C blocks, the K3V2(PO4)3/C bundled nanowires show significantly improved cycling stability. This work provides a facile and effective approach to enhance the electrochemical performance of sodium‐ion batteries.
K3V2(PO4)3/C bundled nanowires are designed and fabricated using a facile organic acid‐assisted method. Ex situ and in situ X‐ray diffraction (XRD) results indicate that the stable framework of the K3V2(PO4)3/C bundled nanowires is responsible for the excellent cycling stability. Constructing K3V2(PO4)3/C bundled nanowires provides an effective approach to enhance the electrochemical performance for sodium‐ion batteries.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201500716</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>bundled nanowires ; fast ion diffusion ; K3V2(PO4)3 ; Sodium ; sodium-ion batteries ; ultrahigh cycling stability</subject><ispartof>Advanced energy materials, 2015-09, Vol.5 (17), p.n/a</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201500716$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201500716$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Wang, Xuanpeng</creatorcontrib><creatorcontrib>Niu, Chaojiang</creatorcontrib><creatorcontrib>Meng, Jiashen</creatorcontrib><creatorcontrib>Hu, Ping</creatorcontrib><creatorcontrib>Xu, Xiaoming</creatorcontrib><creatorcontrib>Wei, Xiujuan</creatorcontrib><creatorcontrib>Zhou, Liang</creatorcontrib><creatorcontrib>Zhao, Kangning</creatorcontrib><creatorcontrib>Luo, Wen</creatorcontrib><creatorcontrib>Yan, Mengyu</creatorcontrib><creatorcontrib>Mai, Liqiang</creatorcontrib><title>Novel K3V2(PO4)3/C Bundled Nanowires as Superior Sodium-Ion Battery Electrode with Ultrahigh Cycling Stability</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>Sodium‐ion battery has captured much attention due to the abundant sodium resources and potentially low cost. However, it suffers from poor cycling stability and low diffusion coefficient, which seriously limit its widespread application. Here, K3V2(PO4)3/C bundled nanowires are fabricated usinga facile organic acid‐assisted method. With a highly stable framework, nanoporous structure, and conductive carbon coating, the K3V2(PO4)3/C bundled nanowires manifest excellent electrochemical performances in sodium‐ion battery. A stable capacity of 119 mAh g−1 can be achieved at 100 mA g−1. Even at a high current density of 2000 mA g−1, 96.0% of the capacity can be retained after 2000 charge–discharge cycles. Comparing with K3V2(PO4)3/C blocks, the K3V2(PO4)3/C bundled nanowires show significantly improved cycling stability. This work provides a facile and effective approach to enhance the electrochemical performance of sodium‐ion batteries.
K3V2(PO4)3/C bundled nanowires are designed and fabricated using a facile organic acid‐assisted method. Ex situ and in situ X‐ray diffraction (XRD) results indicate that the stable framework of the K3V2(PO4)3/C bundled nanowires is responsible for the excellent cycling stability. Constructing K3V2(PO4)3/C bundled nanowires provides an effective approach to enhance the electrochemical performance for sodium‐ion batteries.</description><subject>bundled nanowires</subject><subject>fast ion diffusion</subject><subject>K3V2(PO4)3</subject><subject>Sodium</subject><subject>sodium-ion batteries</subject><subject>ultrahigh cycling stability</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kM1PwkAQxRujiQS5et7Eix4K-9Hddo-AiEQsBkSPmy27hcXS4nYr9r-3BMNcZiZ5v3mZ53m3CHYRhLgndb7rYogohCFiF14LMRT4LArg5Xkm-NrrlOUWNhVwBAlpeXlc_OgMvJAPfP82Cx5IbwgGVa4yrUAs8-JgrC6BLMGi2mtrCgsWhTLVzp8UORhI57StwSjTK2cLpcHBuA1YZs7KjVlvwLBeZSZfg4WTicmMq2-8q1Rmpe7897a3fBq9D5_96Ww8Gfan_hpjwvwIJUmqVjDBKkl5GEQh4zAiigZah1wFWHOaQsZ1ggKWkihNohVPiDpqJGk-a3t3p7t7W3xXunRiW1Q2bywFChHElFOKGhU_qQ4m07XYW7OTthYIimOm4pipOGcq-qP49bw1rH9iTen075mV9kuwkIRUfMZjQemCzUM4F4_kD7jHeug</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Wang, Xuanpeng</creator><creator>Niu, Chaojiang</creator><creator>Meng, Jiashen</creator><creator>Hu, Ping</creator><creator>Xu, Xiaoming</creator><creator>Wei, Xiujuan</creator><creator>Zhou, Liang</creator><creator>Zhao, Kangning</creator><creator>Luo, Wen</creator><creator>Yan, Mengyu</creator><creator>Mai, Liqiang</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150901</creationdate><title>Novel K3V2(PO4)3/C Bundled Nanowires as Superior Sodium-Ion Battery Electrode with Ultrahigh Cycling Stability</title><author>Wang, Xuanpeng ; Niu, Chaojiang ; Meng, Jiashen ; Hu, Ping ; Xu, Xiaoming ; Wei, Xiujuan ; Zhou, Liang ; Zhao, Kangning ; Luo, Wen ; Yan, Mengyu ; Mai, Liqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2236-81bbfdc0b2dbf9748769083d54ee79d42e95f069eb146f38fb8c9b3d083da3103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>bundled nanowires</topic><topic>fast ion diffusion</topic><topic>K3V2(PO4)3</topic><topic>Sodium</topic><topic>sodium-ion batteries</topic><topic>ultrahigh cycling stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuanpeng</creatorcontrib><creatorcontrib>Niu, Chaojiang</creatorcontrib><creatorcontrib>Meng, Jiashen</creatorcontrib><creatorcontrib>Hu, Ping</creatorcontrib><creatorcontrib>Xu, Xiaoming</creatorcontrib><creatorcontrib>Wei, Xiujuan</creatorcontrib><creatorcontrib>Zhou, Liang</creatorcontrib><creatorcontrib>Zhao, Kangning</creatorcontrib><creatorcontrib>Luo, Wen</creatorcontrib><creatorcontrib>Yan, Mengyu</creatorcontrib><creatorcontrib>Mai, Liqiang</creatorcontrib><collection>Istex</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuanpeng</au><au>Niu, Chaojiang</au><au>Meng, Jiashen</au><au>Hu, Ping</au><au>Xu, Xiaoming</au><au>Wei, Xiujuan</au><au>Zhou, Liang</au><au>Zhao, Kangning</au><au>Luo, Wen</au><au>Yan, Mengyu</au><au>Mai, Liqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel K3V2(PO4)3/C Bundled Nanowires as Superior Sodium-Ion Battery Electrode with Ultrahigh Cycling Stability</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>5</volume><issue>17</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Sodium‐ion battery has captured much attention due to the abundant sodium resources and potentially low cost. However, it suffers from poor cycling stability and low diffusion coefficient, which seriously limit its widespread application. Here, K3V2(PO4)3/C bundled nanowires are fabricated usinga facile organic acid‐assisted method. With a highly stable framework, nanoporous structure, and conductive carbon coating, the K3V2(PO4)3/C bundled nanowires manifest excellent electrochemical performances in sodium‐ion battery. A stable capacity of 119 mAh g−1 can be achieved at 100 mA g−1. Even at a high current density of 2000 mA g−1, 96.0% of the capacity can be retained after 2000 charge–discharge cycles. Comparing with K3V2(PO4)3/C blocks, the K3V2(PO4)3/C bundled nanowires show significantly improved cycling stability. This work provides a facile and effective approach to enhance the electrochemical performance of sodium‐ion batteries.
K3V2(PO4)3/C bundled nanowires are designed and fabricated using a facile organic acid‐assisted method. Ex situ and in situ X‐ray diffraction (XRD) results indicate that the stable framework of the K3V2(PO4)3/C bundled nanowires is responsible for the excellent cycling stability. Constructing K3V2(PO4)3/C bundled nanowires provides an effective approach to enhance the electrochemical performance for sodium‐ion batteries.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aenm.201500716</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2015-09, Vol.5 (17), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_1710259551 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | bundled nanowires fast ion diffusion K3V2(PO4)3 Sodium sodium-ion batteries ultrahigh cycling stability |
title | Novel K3V2(PO4)3/C Bundled Nanowires as Superior Sodium-Ion Battery Electrode with Ultrahigh Cycling Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20K3V2(PO4)3/C%20Bundled%20Nanowires%20as%20Superior%20Sodium-Ion%20Battery%20Electrode%20with%20Ultrahigh%20Cycling%20Stability&rft.jtitle=Advanced%20energy%20materials&rft.au=Wang,%20Xuanpeng&rft.date=2015-09-01&rft.volume=5&rft.issue=17&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201500716&rft_dat=%3Cproquest_wiley%3E3801082781%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710259551&rft_id=info:pmid/&rfr_iscdi=true |