Effect of Sintering Temperature on Magnetic Core-Loss Properties of a NiCuZn Ferrite for High-Frequency Power Converters

In an effort to find a magnetic material for making low-loss magnetic components for high-power-density converters, we investigated the magnetic core-loss characteristics of a commercial NiCuZn ferrite (LSF 50) at 5 MHz as a function of the sintering temperature of the ferrite powder. The ferrite po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2015-10, Vol.44 (10), p.3788-3794
Hauptverfasser: Yan, Yi, Ngo, Khai D.T., Hou, Dongbin, Mu, Mingkai, Mei, Yunhui, Lu, Guo-Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In an effort to find a magnetic material for making low-loss magnetic components for high-power-density converters, we investigated the magnetic core-loss characteristics of a commercial NiCuZn ferrite (LSF 50) at 5 MHz as a function of the sintering temperature of the ferrite powder. The ferrite powder was compacted into toroid cores and then sintered at 850°C, 900°C, 950°C, 1000°C, and 1050°C for 2 h. The sintered densities of the cores increased at higher sintering temperatures. The magnetic properties of the sintered cores—complex permeability and core-loss density—were measured. We found that both the real and imaginary parts of the relative permeability increased with sintering temperature. The core-loss results at 5 MHz showed that the cores sintered at 950°C and 1000°C had the lowest core-loss densities, being two to three times lower than that of a commercial NiZn ferrite (4F1) core. Microstructures of the sintered cores were examined by scanning electron microscopy; the grains grew significantly at higher sintering temperatures.
ISSN:0361-5235
1543-186X
DOI:10.1007/s11664-015-3836-z