Loop equation analysis of the circular [beta] ensembles
Abstract We construct a hierarchy of loop equations for invariant circular ensembles. These are valid for general classes of potentials and for arbitrary inverse temperatures Re [beta] > 0 and number of eigenvalues N. Using matching arguments for the resolvent functions of linear statistics f([ze...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2015-02, Vol.2015 (2), p.1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2015 |
creator | Witte, N S rester, P J |
description | Abstract We construct a hierarchy of loop equations for invariant circular ensembles. These are valid for general classes of potentials and for arbitrary inverse temperatures Re [beta] > 0 and number of eigenvalues N. Using matching arguments for the resolvent functions of linear statistics f([zeta]) = ([zeta] + z)/([zeta] - z) in a particular asymptotic regime, the global regime, we systematically develop the corresponding large N expansion and apply this solution scheme to the Dyson circular ensemble. Currently we can compute the second resolvent function to ten orders in this expansion and also its general Fourier coefficient or moment m^sub k^ to an equivalent length. The leading large N, large k, k/N fixed form of the moments can be related to the small wave-number expansion of the structure function in the bulk, scaled Dyson circular ensemble, known from earlier work. From the moment expansion we conjecture some exact partial fraction forms for the low k moments. For all of the forgoing results we have made a comparison with the exactly soluble cases of [beta] = 1, 2, 4, general N and even, positive [beta], N = 2, 3. |
doi_str_mv | 10.1007/JHEP02(2015)173 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1708027183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3791779041</sourcerecordid><originalsourceid>FETCH-proquest_journals_17080271833</originalsourceid><addsrcrecordid>eNqNjD0LwjAUAIMgWD9m14CLDup7qZJ2lkoRBwc3kZKWFFti0-Y1g__eDv4ApxvuOMaWCDsEkPtLmtxArAXgcYMyHLEAQcTb6CDjCZsS1TAYjCFg8mpty3XnVV_ZhqtGmQ9VxG3J-5fmReUKb5Tjj1z36sl1Q_qdG01zNi6VIb34ccZW5-R-Srets53X1Ge19W64UYYSIhASozD8r_oCPg06Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708027183</pqid></control><display><type>article</type><title>Loop equation analysis of the circular [beta] ensembles</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Witte, N S ; rester, P J</creator><creatorcontrib>Witte, N S ; rester, P J</creatorcontrib><description>Abstract We construct a hierarchy of loop equations for invariant circular ensembles. These are valid for general classes of potentials and for arbitrary inverse temperatures Re [beta] > 0 and number of eigenvalues N. Using matching arguments for the resolvent functions of linear statistics f([zeta]) = ([zeta] + z)/([zeta] - z) in a particular asymptotic regime, the global regime, we systematically develop the corresponding large N expansion and apply this solution scheme to the Dyson circular ensemble. Currently we can compute the second resolvent function to ten orders in this expansion and also its general Fourier coefficient or moment m^sub k^ to an equivalent length. The leading large N, large k, k/N fixed form of the moments can be related to the small wave-number expansion of the structure function in the bulk, scaled Dyson circular ensemble, known from earlier work. From the moment expansion we conjecture some exact partial fraction forms for the low k moments. For all of the forgoing results we have made a comparison with the exactly soluble cases of [beta] = 1, 2, 4, general N and even, positive [beta], N = 2, 3.</description><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP02(2015)173</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>High energy physics</subject><ispartof>The journal of high energy physics, 2015-02, Vol.2015 (2), p.1</ispartof><rights>SISSA, Trieste, Italy 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Witte, N S</creatorcontrib><creatorcontrib>rester, P J</creatorcontrib><title>Loop equation analysis of the circular [beta] ensembles</title><title>The journal of high energy physics</title><description>Abstract We construct a hierarchy of loop equations for invariant circular ensembles. These are valid for general classes of potentials and for arbitrary inverse temperatures Re [beta] > 0 and number of eigenvalues N. Using matching arguments for the resolvent functions of linear statistics f([zeta]) = ([zeta] + z)/([zeta] - z) in a particular asymptotic regime, the global regime, we systematically develop the corresponding large N expansion and apply this solution scheme to the Dyson circular ensemble. Currently we can compute the second resolvent function to ten orders in this expansion and also its general Fourier coefficient or moment m^sub k^ to an equivalent length. The leading large N, large k, k/N fixed form of the moments can be related to the small wave-number expansion of the structure function in the bulk, scaled Dyson circular ensemble, known from earlier work. From the moment expansion we conjecture some exact partial fraction forms for the low k moments. For all of the forgoing results we have made a comparison with the exactly soluble cases of [beta] = 1, 2, 4, general N and even, positive [beta], N = 2, 3.</description><subject>High energy physics</subject><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjD0LwjAUAIMgWD9m14CLDup7qZJ2lkoRBwc3kZKWFFti0-Y1g__eDv4ApxvuOMaWCDsEkPtLmtxArAXgcYMyHLEAQcTb6CDjCZsS1TAYjCFg8mpty3XnVV_ZhqtGmQ9VxG3J-5fmReUKb5Tjj1z36sl1Q_qdG01zNi6VIb34ccZW5-R-Srets53X1Ge19W64UYYSIhASozD8r_oCPg06Dw</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Witte, N S</creator><creator>rester, P J</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20150201</creationdate><title>Loop equation analysis of the circular [beta] ensembles</title><author>Witte, N S ; rester, P J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_17080271833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>High energy physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Witte, N S</creatorcontrib><creatorcontrib>rester, P J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Witte, N S</au><au>rester, P J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loop equation analysis of the circular [beta] ensembles</atitle><jtitle>The journal of high energy physics</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>2015</volume><issue>2</issue><spage>1</spage><pages>1-</pages><eissn>1029-8479</eissn><abstract>Abstract We construct a hierarchy of loop equations for invariant circular ensembles. These are valid for general classes of potentials and for arbitrary inverse temperatures Re [beta] > 0 and number of eigenvalues N. Using matching arguments for the resolvent functions of linear statistics f([zeta]) = ([zeta] + z)/([zeta] - z) in a particular asymptotic regime, the global regime, we systematically develop the corresponding large N expansion and apply this solution scheme to the Dyson circular ensemble. Currently we can compute the second resolvent function to ten orders in this expansion and also its general Fourier coefficient or moment m^sub k^ to an equivalent length. The leading large N, large k, k/N fixed form of the moments can be related to the small wave-number expansion of the structure function in the bulk, scaled Dyson circular ensemble, known from earlier work. From the moment expansion we conjecture some exact partial fraction forms for the low k moments. For all of the forgoing results we have made a comparison with the exactly soluble cases of [beta] = 1, 2, 4, general N and even, positive [beta], N = 2, 3.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/JHEP02(2015)173</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2015-02, Vol.2015 (2), p.1 |
issn | 1029-8479 |
language | eng |
recordid | cdi_proquest_journals_1708027183 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Springer Nature OA/Free Journals |
subjects | High energy physics |
title | Loop equation analysis of the circular [beta] ensembles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A06%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loop%20equation%20analysis%20of%20the%20circular%20%5Bbeta%5D%20ensembles&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Witte,%20N%20S&rft.date=2015-02-01&rft.volume=2015&rft.issue=2&rft.spage=1&rft.pages=1-&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP02(2015)173&rft_dat=%3Cproquest%3E3791779041%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708027183&rft_id=info:pmid/&rfr_iscdi=true |