On a Gopakumar-Vafa form of partition function of Chern-Simons theory on classical and exceptional lines
A bstract We show that partition function of Chern-Simons theory on three-sphere with classical and exceptional groups (actually on the whole corresponding lines in Vogel’s plane) can be represented as ratio of respectively triple and double sine functions (last function is essentially a modular qua...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2014-12, Vol.2014 (12), p.1, Article 171 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2014 |
creator | Mkrtchyan, R. L. |
description | A
bstract
We show that partition function of Chern-Simons theory on three-sphere with classical and exceptional groups (actually on the whole corresponding lines in Vogel’s plane) can be represented as ratio of respectively triple and double sine functions (last function is essentially a modular quantum dilogarithm). The product representation of sine functions gives Gopakumar-Vafa structure form of partition function, which in turn gives a corresponding integer invariants of manifold after geometrical transition. In this way we suggest to extend gauge/string duality to exceptional groups, although one still have to resolve few problems. In both classical and exceptional cases an additional terms, non-perturbative w.r.t. the string coupling constant, appear. The full universal partition function of ChernSimons theory on three-sphere is shown to be the ratio of quadruple sine functions. We also briefly discuss the matrix model for exceptional line. |
doi_str_mv | 10.1007/JHEP12(2014)171 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1708025506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3791760751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-bd26c8c0d3141e594d18382fc77e07391987313eb70f694fa95a8ae8cb83ea6a3</originalsourceid><addsrcrecordid>eNp1kLtPwzAQxi0EEuUxs1pigSHUFyexPaKqtKBKReKxRq5j05TUDnYi0f8elzB0YbrX9zvdfQhdAbkDQtj4aT59hvQmJZDdAoMjNAKSioRnTBwf5KfoLIQNIZCDICO0Xlos8cy18rPfSp-8SyOxcX6LncGt9F3d1c5i01v1m8TuZK29TV7qrbMBd2vt_A7HiWpkCLWSDZa2wvpb6XZPxLqprQ4X6MTIJujLv3iO3h6mr5N5sljOHif3i0TRHLpkVaWF4opUFDLQucgq4JSnRjGmCaMCBGcUqF4xYgqRGSlyyaXmasWploWk5-h62Nt699Xr0JUb1_t4RiiBEU7SPCdFVI0HlfIuBK9N2fo6_r8rgZR7O8vBznJvZwQhEmQgQlTaD-0P9v6D_ADOQ3dj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708025506</pqid></control><display><type>article</type><title>On a Gopakumar-Vafa form of partition function of Chern-Simons theory on classical and exceptional lines</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Mkrtchyan, R. L.</creator><creatorcontrib>Mkrtchyan, R. L.</creatorcontrib><description>A
bstract
We show that partition function of Chern-Simons theory on three-sphere with classical and exceptional groups (actually on the whole corresponding lines in Vogel’s plane) can be represented as ratio of respectively triple and double sine functions (last function is essentially a modular quantum dilogarithm). The product representation of sine functions gives Gopakumar-Vafa structure form of partition function, which in turn gives a corresponding integer invariants of manifold after geometrical transition. In this way we suggest to extend gauge/string duality to exceptional groups, although one still have to resolve few problems. In both classical and exceptional cases an additional terms, non-perturbative w.r.t. the string coupling constant, appear. The full universal partition function of ChernSimons theory on three-sphere is shown to be the ratio of quadruple sine functions. We also briefly discuss the matrix model for exceptional line.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP12(2014)171</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Elementary Particles ; High energy physics ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2014-12, Vol.2014 (12), p.1, Article 171</ispartof><rights>The Author(s) 2014</rights><rights>SISSA, Trieste, Italy 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-bd26c8c0d3141e594d18382fc77e07391987313eb70f694fa95a8ae8cb83ea6a3</citedby><cites>FETCH-LOGICAL-c351t-bd26c8c0d3141e594d18382fc77e07391987313eb70f694fa95a8ae8cb83ea6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP12(2014)171$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP12(2014)171$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,42165,51551</link.rule.ids></links><search><creatorcontrib>Mkrtchyan, R. L.</creatorcontrib><title>On a Gopakumar-Vafa form of partition function of Chern-Simons theory on classical and exceptional lines</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
We show that partition function of Chern-Simons theory on three-sphere with classical and exceptional groups (actually on the whole corresponding lines in Vogel’s plane) can be represented as ratio of respectively triple and double sine functions (last function is essentially a modular quantum dilogarithm). The product representation of sine functions gives Gopakumar-Vafa structure form of partition function, which in turn gives a corresponding integer invariants of manifold after geometrical transition. In this way we suggest to extend gauge/string duality to exceptional groups, although one still have to resolve few problems. In both classical and exceptional cases an additional terms, non-perturbative w.r.t. the string coupling constant, appear. The full universal partition function of ChernSimons theory on three-sphere is shown to be the ratio of quadruple sine functions. We also briefly discuss the matrix model for exceptional line.</description><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kLtPwzAQxi0EEuUxs1pigSHUFyexPaKqtKBKReKxRq5j05TUDnYi0f8elzB0YbrX9zvdfQhdAbkDQtj4aT59hvQmJZDdAoMjNAKSioRnTBwf5KfoLIQNIZCDICO0Xlos8cy18rPfSp-8SyOxcX6LncGt9F3d1c5i01v1m8TuZK29TV7qrbMBd2vt_A7HiWpkCLWSDZa2wvpb6XZPxLqprQ4X6MTIJujLv3iO3h6mr5N5sljOHif3i0TRHLpkVaWF4opUFDLQucgq4JSnRjGmCaMCBGcUqF4xYgqRGSlyyaXmasWploWk5-h62Nt699Xr0JUb1_t4RiiBEU7SPCdFVI0HlfIuBK9N2fo6_r8rgZR7O8vBznJvZwQhEmQgQlTaD-0P9v6D_ADOQ3dj</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Mkrtchyan, R. L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20141201</creationdate><title>On a Gopakumar-Vafa form of partition function of Chern-Simons theory on classical and exceptional lines</title><author>Mkrtchyan, R. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-bd26c8c0d3141e594d18382fc77e07391987313eb70f694fa95a8ae8cb83ea6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mkrtchyan, R. L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mkrtchyan, R. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a Gopakumar-Vafa form of partition function of Chern-Simons theory on classical and exceptional lines</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>2014</volume><issue>12</issue><spage>1</spage><pages>1-</pages><artnum>171</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
We show that partition function of Chern-Simons theory on three-sphere with classical and exceptional groups (actually on the whole corresponding lines in Vogel’s plane) can be represented as ratio of respectively triple and double sine functions (last function is essentially a modular quantum dilogarithm). The product representation of sine functions gives Gopakumar-Vafa structure form of partition function, which in turn gives a corresponding integer invariants of manifold after geometrical transition. In this way we suggest to extend gauge/string duality to exceptional groups, although one still have to resolve few problems. In both classical and exceptional cases an additional terms, non-perturbative w.r.t. the string coupling constant, appear. The full universal partition function of ChernSimons theory on three-sphere is shown to be the ratio of quadruple sine functions. We also briefly discuss the matrix model for exceptional line.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP12(2014)171</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2014-12, Vol.2014 (12), p.1, Article 171 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_proquest_journals_1708025506 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Springer Nature OA Free Journals |
subjects | Classical and Quantum Gravitation Elementary Particles High energy physics Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory |
title | On a Gopakumar-Vafa form of partition function of Chern-Simons theory on classical and exceptional lines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20Gopakumar-Vafa%20form%20of%20partition%20function%20of%20Chern-Simons%20theory%20on%20classical%20and%20exceptional%20lines&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Mkrtchyan,%20R.%20L.&rft.date=2014-12-01&rft.volume=2014&rft.issue=12&rft.spage=1&rft.pages=1-&rft.artnum=171&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP12(2014)171&rft_dat=%3Cproquest_cross%3E3791760751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708025506&rft_id=info:pmid/&rfr_iscdi=true |