OPE of the energy-momentum tensor correlator and the gluon condensate operator in massless QCD to three-loop order
A bstract The correlator of two gluonic operators plays an important role for example in transport properties of a Quark Gluon Plasma (QGP) or in sum rules for glueballs. In [ 1 ] an operator product expansion (OPE) at zero temperature was performed for the correlators of two scalar operators O 1 =...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2014-10, Vol.2014 (10), p.1, Article 169 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2014 |
creator | Zoller, M. F. |
description | A
bstract
The correlator of two gluonic operators plays an important role for example in transport properties of a Quark Gluon Plasma (QGP) or in sum rules for glueballs.
In [
1
] an operator product expansion (OPE) at zero temperature was performed for the correlators of two scalar operators
O
1
=
−
1
4
G
μ
ν
G
μ
ν
and two QCD energy-momentum tensors
T
μ
ν
. There we presented analytical two-loop results for the Wilson coefficient
C
1
in front of the gluon condensate operator
O
1
. In this paper these results are extended to three-loop order.
The three-loop Wilson coefficient
C
0
in front of the unity operator
O
0
=
was already presented in [
1
] for the
T
μ
ν
-correlator. For the
O
1
-correlator the coefficient
C
0
is known to four loop order from [
2
]. For the correlator of two pseudoscalar operators
Õ
1
=
ε
μνρσ
G
μ
ν
G
ρσ
both coefficients
C
0
and
C
1
were computed in [
3
] to three-loop order. At zero temperature
C
0
and
C
1
are the leading Wilson coefficients in massless QCD. |
doi_str_mv | 10.1007/JHEP10(2014)169 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1708021031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3791708691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-a9518f3ca748f8c195f8ee735a4b77f7e2360a1628b171af302db23123bfff343</originalsourceid><addsrcrecordid>eNp1kDFPwzAQRi0EEqUws1pigSHUFyd1MqJSKKhSiwSz5STn0iqxg50M_fe4DUMXpvuke9-d9Ai5BfYIjInJ-2K-BnYfM0geYJqfkRGwOI-yROTnJ_mSXHm_YwxSyNmIuNV6Tq2m3TdSNOg2-6ixDZqub2iHxltHS-sc1qoLUZnqSG7q3pqwMFVAVIfUtuiOxNbQRnlfo_f0Y_ZMOxsKDjGqrW2pdRW6a3KhVe3x5m-OydfL_HO2iJar17fZ0zIqeQpdpPIUMs1LJZJMZyXkqc4QBU9VUgihBcZ8yhRM46wAAUpzFldFzCHmhdaaJ3xM7oa7rbM_PfpO7mzvTHgpQbCMxcA4BGoyUKWz3jvUsnXbRrm9BCYPYuUgVh7EyiA2NNjQ8IE0G3Qnd_-p_AKl_Xsl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708021031</pqid></control><display><type>article</type><title>OPE of the energy-momentum tensor correlator and the gluon condensate operator in massless QCD to three-loop order</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Zoller, M. F.</creator><creatorcontrib>Zoller, M. F.</creatorcontrib><description>A
bstract
The correlator of two gluonic operators plays an important role for example in transport properties of a Quark Gluon Plasma (QGP) or in sum rules for glueballs.
In [
1
] an operator product expansion (OPE) at zero temperature was performed for the correlators of two scalar operators
O
1
=
−
1
4
G
μ
ν
G
μ
ν
and two QCD energy-momentum tensors
T
μ
ν
. There we presented analytical two-loop results for the Wilson coefficient
C
1
in front of the gluon condensate operator
O
1
. In this paper these results are extended to three-loop order.
The three-loop Wilson coefficient
C
0
in front of the unity operator
O
0
=
was already presented in [
1
] for the
T
μ
ν
-correlator. For the
O
1
-correlator the coefficient
C
0
is known to four loop order from [
2
]. For the correlator of two pseudoscalar operators
Õ
1
=
ε
μνρσ
G
μ
ν
G
ρσ
both coefficients
C
0
and
C
1
were computed in [
3
] to three-loop order. At zero temperature
C
0
and
C
1
are the leading Wilson coefficients in massless QCD.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP10(2014)169</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Elementary Particles ; High energy physics ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2014-10, Vol.2014 (10), p.1, Article 169</ispartof><rights>The Author(s) 2014</rights><rights>SISSA, Trieste, Italy 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-a9518f3ca748f8c195f8ee735a4b77f7e2360a1628b171af302db23123bfff343</citedby><cites>FETCH-LOGICAL-c351t-a9518f3ca748f8c195f8ee735a4b77f7e2360a1628b171af302db23123bfff343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP10(2014)169$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP10(2014)169$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27922,27923,41118,42187,51574</link.rule.ids></links><search><creatorcontrib>Zoller, M. F.</creatorcontrib><title>OPE of the energy-momentum tensor correlator and the gluon condensate operator in massless QCD to three-loop order</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
The correlator of two gluonic operators plays an important role for example in transport properties of a Quark Gluon Plasma (QGP) or in sum rules for glueballs.
In [
1
] an operator product expansion (OPE) at zero temperature was performed for the correlators of two scalar operators
O
1
=
−
1
4
G
μ
ν
G
μ
ν
and two QCD energy-momentum tensors
T
μ
ν
. There we presented analytical two-loop results for the Wilson coefficient
C
1
in front of the gluon condensate operator
O
1
. In this paper these results are extended to three-loop order.
The three-loop Wilson coefficient
C
0
in front of the unity operator
O
0
=
was already presented in [
1
] for the
T
μ
ν
-correlator. For the
O
1
-correlator the coefficient
C
0
is known to four loop order from [
2
]. For the correlator of two pseudoscalar operators
Õ
1
=
ε
μνρσ
G
μ
ν
G
ρσ
both coefficients
C
0
and
C
1
were computed in [
3
] to three-loop order. At zero temperature
C
0
and
C
1
are the leading Wilson coefficients in massless QCD.</description><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kDFPwzAQRi0EEqUws1pigSHUFyd1MqJSKKhSiwSz5STn0iqxg50M_fe4DUMXpvuke9-d9Ai5BfYIjInJ-2K-BnYfM0geYJqfkRGwOI-yROTnJ_mSXHm_YwxSyNmIuNV6Tq2m3TdSNOg2-6ixDZqub2iHxltHS-sc1qoLUZnqSG7q3pqwMFVAVIfUtuiOxNbQRnlfo_f0Y_ZMOxsKDjGqrW2pdRW6a3KhVe3x5m-OydfL_HO2iJar17fZ0zIqeQpdpPIUMs1LJZJMZyXkqc4QBU9VUgihBcZ8yhRM46wAAUpzFldFzCHmhdaaJ3xM7oa7rbM_PfpO7mzvTHgpQbCMxcA4BGoyUKWz3jvUsnXbRrm9BCYPYuUgVh7EyiA2NNjQ8IE0G3Qnd_-p_AKl_Xsl</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Zoller, M. F.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20141001</creationdate><title>OPE of the energy-momentum tensor correlator and the gluon condensate operator in massless QCD to three-loop order</title><author>Zoller, M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-a9518f3ca748f8c195f8ee735a4b77f7e2360a1628b171af302db23123bfff343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zoller, M. F.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zoller, M. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPE of the energy-momentum tensor correlator and the gluon condensate operator in massless QCD to three-loop order</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>2014</volume><issue>10</issue><spage>1</spage><pages>1-</pages><artnum>169</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
The correlator of two gluonic operators plays an important role for example in transport properties of a Quark Gluon Plasma (QGP) or in sum rules for glueballs.
In [
1
] an operator product expansion (OPE) at zero temperature was performed for the correlators of two scalar operators
O
1
=
−
1
4
G
μ
ν
G
μ
ν
and two QCD energy-momentum tensors
T
μ
ν
. There we presented analytical two-loop results for the Wilson coefficient
C
1
in front of the gluon condensate operator
O
1
. In this paper these results are extended to three-loop order.
The three-loop Wilson coefficient
C
0
in front of the unity operator
O
0
=
was already presented in [
1
] for the
T
μ
ν
-correlator. For the
O
1
-correlator the coefficient
C
0
is known to four loop order from [
2
]. For the correlator of two pseudoscalar operators
Õ
1
=
ε
μνρσ
G
μ
ν
G
ρσ
both coefficients
C
0
and
C
1
were computed in [
3
] to three-loop order. At zero temperature
C
0
and
C
1
are the leading Wilson coefficients in massless QCD.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP10(2014)169</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2014-10, Vol.2014 (10), p.1, Article 169 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_proquest_journals_1708021031 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Classical and Quantum Gravitation Elementary Particles High energy physics Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Relativity Theory String Theory |
title | OPE of the energy-momentum tensor correlator and the gluon condensate operator in massless QCD to three-loop order |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPE%20of%20the%20energy-momentum%20tensor%20correlator%20and%20the%20gluon%20condensate%20operator%20in%20massless%20QCD%20to%20three-loop%20order&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Zoller,%20M.%20F.&rft.date=2014-10-01&rft.volume=2014&rft.issue=10&rft.spage=1&rft.pages=1-&rft.artnum=169&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP10(2014)169&rft_dat=%3Cproquest_cross%3E3791708691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708021031&rft_id=info:pmid/&rfr_iscdi=true |