OPE of the energy-momentum tensor correlator and the gluon condensate operator in massless QCD to three-loop order

A bstract The correlator of two gluonic operators plays an important role for example in transport properties of a Quark Gluon Plasma (QGP) or in sum rules for glueballs. In [ 1 ] an operator product expansion (OPE) at zero temperature was performed for the correlators of two scalar operators O 1 =...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2014-10, Vol.2014 (10), p.1, Article 169
1. Verfasser: Zoller, M. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1
container_title The journal of high energy physics
container_volume 2014
creator Zoller, M. F.
description A bstract The correlator of two gluonic operators plays an important role for example in transport properties of a Quark Gluon Plasma (QGP) or in sum rules for glueballs. In [ 1 ] an operator product expansion (OPE) at zero temperature was performed for the correlators of two scalar operators O 1 = − 1 4 G μ ν G μ ν and two QCD energy-momentum tensors T μ ν . There we presented analytical two-loop results for the Wilson coefficient C 1 in front of the gluon condensate operator O 1 . In this paper these results are extended to three-loop order. The three-loop Wilson coefficient C 0 in front of the unity operator O 0 = was already presented in [ 1 ] for the T μ ν -correlator. For the O 1 -correlator the coefficient C 0 is known to four loop order from [ 2 ]. For the correlator of two pseudoscalar operators Õ 1 = ε μνρσ G μ ν G ρσ both coefficients C 0 and C 1 were computed in [ 3 ] to three-loop order. At zero temperature C 0 and C 1 are the leading Wilson coefficients in massless QCD.
doi_str_mv 10.1007/JHEP10(2014)169
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1708021031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3791708691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-a9518f3ca748f8c195f8ee735a4b77f7e2360a1628b171af302db23123bfff343</originalsourceid><addsrcrecordid>eNp1kDFPwzAQRi0EEqUws1pigSHUFyd1MqJSKKhSiwSz5STn0iqxg50M_fe4DUMXpvuke9-d9Ai5BfYIjInJ-2K-BnYfM0geYJqfkRGwOI-yROTnJ_mSXHm_YwxSyNmIuNV6Tq2m3TdSNOg2-6ixDZqub2iHxltHS-sc1qoLUZnqSG7q3pqwMFVAVIfUtuiOxNbQRnlfo_f0Y_ZMOxsKDjGqrW2pdRW6a3KhVe3x5m-OydfL_HO2iJar17fZ0zIqeQpdpPIUMs1LJZJMZyXkqc4QBU9VUgihBcZ8yhRM46wAAUpzFldFzCHmhdaaJ3xM7oa7rbM_PfpO7mzvTHgpQbCMxcA4BGoyUKWz3jvUsnXbRrm9BCYPYuUgVh7EyiA2NNjQ8IE0G3Qnd_-p_AKl_Xsl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708021031</pqid></control><display><type>article</type><title>OPE of the energy-momentum tensor correlator and the gluon condensate operator in massless QCD to three-loop order</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Zoller, M. F.</creator><creatorcontrib>Zoller, M. F.</creatorcontrib><description>A bstract The correlator of two gluonic operators plays an important role for example in transport properties of a Quark Gluon Plasma (QGP) or in sum rules for glueballs. In [ 1 ] an operator product expansion (OPE) at zero temperature was performed for the correlators of two scalar operators O 1 = − 1 4 G μ ν G μ ν and two QCD energy-momentum tensors T μ ν . There we presented analytical two-loop results for the Wilson coefficient C 1 in front of the gluon condensate operator O 1 . In this paper these results are extended to three-loop order. The three-loop Wilson coefficient C 0 in front of the unity operator O 0 = was already presented in [ 1 ] for the T μ ν -correlator. For the O 1 -correlator the coefficient C 0 is known to four loop order from [ 2 ]. For the correlator of two pseudoscalar operators Õ 1 = ε μνρσ G μ ν G ρσ both coefficients C 0 and C 1 were computed in [ 3 ] to three-loop order. At zero temperature C 0 and C 1 are the leading Wilson coefficients in massless QCD.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP10(2014)169</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Elementary Particles ; High energy physics ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2014-10, Vol.2014 (10), p.1, Article 169</ispartof><rights>The Author(s) 2014</rights><rights>SISSA, Trieste, Italy 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-a9518f3ca748f8c195f8ee735a4b77f7e2360a1628b171af302db23123bfff343</citedby><cites>FETCH-LOGICAL-c351t-a9518f3ca748f8c195f8ee735a4b77f7e2360a1628b171af302db23123bfff343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP10(2014)169$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP10(2014)169$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27922,27923,41118,42187,51574</link.rule.ids></links><search><creatorcontrib>Zoller, M. F.</creatorcontrib><title>OPE of the energy-momentum tensor correlator and the gluon condensate operator in massless QCD to three-loop order</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract The correlator of two gluonic operators plays an important role for example in transport properties of a Quark Gluon Plasma (QGP) or in sum rules for glueballs. In [ 1 ] an operator product expansion (OPE) at zero temperature was performed for the correlators of two scalar operators O 1 = − 1 4 G μ ν G μ ν and two QCD energy-momentum tensors T μ ν . There we presented analytical two-loop results for the Wilson coefficient C 1 in front of the gluon condensate operator O 1 . In this paper these results are extended to three-loop order. The three-loop Wilson coefficient C 0 in front of the unity operator O 0 = was already presented in [ 1 ] for the T μ ν -correlator. For the O 1 -correlator the coefficient C 0 is known to four loop order from [ 2 ]. For the correlator of two pseudoscalar operators Õ 1 = ε μνρσ G μ ν G ρσ both coefficients C 0 and C 1 were computed in [ 3 ] to three-loop order. At zero temperature C 0 and C 1 are the leading Wilson coefficients in massless QCD.</description><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kDFPwzAQRi0EEqUws1pigSHUFyd1MqJSKKhSiwSz5STn0iqxg50M_fe4DUMXpvuke9-d9Ai5BfYIjInJ-2K-BnYfM0geYJqfkRGwOI-yROTnJ_mSXHm_YwxSyNmIuNV6Tq2m3TdSNOg2-6ixDZqub2iHxltHS-sc1qoLUZnqSG7q3pqwMFVAVIfUtuiOxNbQRnlfo_f0Y_ZMOxsKDjGqrW2pdRW6a3KhVe3x5m-OydfL_HO2iJar17fZ0zIqeQpdpPIUMs1LJZJMZyXkqc4QBU9VUgihBcZ8yhRM46wAAUpzFldFzCHmhdaaJ3xM7oa7rbM_PfpO7mzvTHgpQbCMxcA4BGoyUKWz3jvUsnXbRrm9BCYPYuUgVh7EyiA2NNjQ8IE0G3Qnd_-p_AKl_Xsl</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Zoller, M. F.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20141001</creationdate><title>OPE of the energy-momentum tensor correlator and the gluon condensate operator in massless QCD to three-loop order</title><author>Zoller, M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-a9518f3ca748f8c195f8ee735a4b77f7e2360a1628b171af302db23123bfff343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zoller, M. F.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zoller, M. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPE of the energy-momentum tensor correlator and the gluon condensate operator in massless QCD to three-loop order</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>2014</volume><issue>10</issue><spage>1</spage><pages>1-</pages><artnum>169</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract The correlator of two gluonic operators plays an important role for example in transport properties of a Quark Gluon Plasma (QGP) or in sum rules for glueballs. In [ 1 ] an operator product expansion (OPE) at zero temperature was performed for the correlators of two scalar operators O 1 = − 1 4 G μ ν G μ ν and two QCD energy-momentum tensors T μ ν . There we presented analytical two-loop results for the Wilson coefficient C 1 in front of the gluon condensate operator O 1 . In this paper these results are extended to three-loop order. The three-loop Wilson coefficient C 0 in front of the unity operator O 0 = was already presented in [ 1 ] for the T μ ν -correlator. For the O 1 -correlator the coefficient C 0 is known to four loop order from [ 2 ]. For the correlator of two pseudoscalar operators Õ 1 = ε μνρσ G μ ν G ρσ both coefficients C 0 and C 1 were computed in [ 3 ] to three-loop order. At zero temperature C 0 and C 1 are the leading Wilson coefficients in massless QCD.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP10(2014)169</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2014-10, Vol.2014 (10), p.1, Article 169
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_journals_1708021031
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Classical and Quantum Gravitation
Elementary Particles
High energy physics
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
String Theory
title OPE of the energy-momentum tensor correlator and the gluon condensate operator in massless QCD to three-loop order
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPE%20of%20the%20energy-momentum%20tensor%20correlator%20and%20the%20gluon%20condensate%20operator%20in%20massless%20QCD%20to%20three-loop%20order&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Zoller,%20M.%20F.&rft.date=2014-10-01&rft.volume=2014&rft.issue=10&rft.spage=1&rft.pages=1-&rft.artnum=169&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP10(2014)169&rft_dat=%3Cproquest_cross%3E3791708691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708021031&rft_id=info:pmid/&rfr_iscdi=true