String theoretic QCD axions in the light of PLANCK and BICEP2

A bstract The QCD axion solving the strong CP problem may originate from antisymmetric tensor gauge fields in compactified string theory, with a decay constant around the GUT scale. Such possibility appears to be ruled out now by the detection of tensor modes by BICEP2 and the PLANCK constraints on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2014-07, Vol.2014 (7), p.1, Article 92
Hauptverfasser: Choi, Kiwoon, Jeong, Kwang Sik, Seo, Min-Seok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1
container_title The journal of high energy physics
container_volume 2014
creator Choi, Kiwoon
Jeong, Kwang Sik
Seo, Min-Seok
description A bstract The QCD axion solving the strong CP problem may originate from antisymmetric tensor gauge fields in compactified string theory, with a decay constant around the GUT scale. Such possibility appears to be ruled out now by the detection of tensor modes by BICEP2 and the PLANCK constraints on isocurvature density perturbations. A more interesting and still viable possibility is that the string theoretic QCD axion is charged under an anomalous U(1) A gauge symmetry. In such case, the axion decay constant can be much lower than the GUT scale if moduli are stabilized near the point of vanishing Fayet-Illiopoulos term, and U(1) A -charged matter fields get a vacuum value v  ~ ( m SUSY M Pl n ) 1/( n  + 1) ( n ≥ 0) induced by a tachyonic SUSY breaking mass m SUSY . We examine the symmetry breaking pattern of such models during the inflationary epoch with H I ≃ 10 14 GeV, and identify the range of the QCD axion decay constant, as well as the corresponding relic axion abundance, consistent with known cosmological constraints. In addition to the case that the PQ symmetry is restored during inflation, i.e. v ( t I ) = 0, there are other viable scenarios, including that the PQ symmetry is broken during inflation with v ( t I ) ∼ (4 πH I M Pl n ) 1/( n  + 1) ~ 10 16 –10 17 GeV due to the Hubble-induced D -term D A  ~ 8 π 2 H I 2 , while v ( t 0 ) ~ ( m SUSY M Pl n ) 1/( n  + 1) ~ 10 9 –5 × 10 13 GeV in the present universe, where v ( t 0 ) above 10 12 GeV requires a fine-tuning of the axion misalignment angle. We also discuss the implications of our results for the size of SUSY breaking soft masses.
doi_str_mv 10.1007/JHEP07(2014)092
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1708014180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3791647421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-7b97cc84517864172ea57ec0b33f990e3a82012a5d25cb70432b9c3d658f951d3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqUws1pigSH07MS1PTCUUGihgiJgthzHaVOVJNipBP8eR2HownSn03vv7j6EzglcEwA-epxNl8AvKZDkCiQ9QAMCVEYi4fJwrz9GJ95vAAgjEgbo5q11ZbXC7drWzralwa_pHdbfZV15XFbdHG_L1brFdYGXi8lz-oR1lePbeTpd0lN0VOitt2d_dYg-7qfv6SxavDzM08kiMgnhbcQzyY0RCSNcjMOEWs24NZDFcSEl2FiLcDbVLKfMZBySmGbSxPmYiUIyksdDdNHnNq7-2lnfqk29c1VYqQgHEV4mAoJq1KuMq713tlCNKz-1-1EEVMdI9YxUx0gFRsEBvcM3HQXr9nL_sfwCD3FkpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708014180</pqid></control><display><type>article</type><title>String theoretic QCD axions in the light of PLANCK and BICEP2</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Choi, Kiwoon ; Jeong, Kwang Sik ; Seo, Min-Seok</creator><creatorcontrib>Choi, Kiwoon ; Jeong, Kwang Sik ; Seo, Min-Seok</creatorcontrib><description>A bstract The QCD axion solving the strong CP problem may originate from antisymmetric tensor gauge fields in compactified string theory, with a decay constant around the GUT scale. Such possibility appears to be ruled out now by the detection of tensor modes by BICEP2 and the PLANCK constraints on isocurvature density perturbations. A more interesting and still viable possibility is that the string theoretic QCD axion is charged under an anomalous U(1) A gauge symmetry. In such case, the axion decay constant can be much lower than the GUT scale if moduli are stabilized near the point of vanishing Fayet-Illiopoulos term, and U(1) A -charged matter fields get a vacuum value v  ~ ( m SUSY M Pl n ) 1/( n  + 1) ( n ≥ 0) induced by a tachyonic SUSY breaking mass m SUSY . We examine the symmetry breaking pattern of such models during the inflationary epoch with H I ≃ 10 14 GeV, and identify the range of the QCD axion decay constant, as well as the corresponding relic axion abundance, consistent with known cosmological constraints. In addition to the case that the PQ symmetry is restored during inflation, i.e. v ( t I ) = 0, there are other viable scenarios, including that the PQ symmetry is broken during inflation with v ( t I ) ∼ (4 πH I M Pl n ) 1/( n  + 1) ~ 10 16 –10 17 GeV due to the Hubble-induced D -term D A  ~ 8 π 2 H I 2 , while v ( t 0 ) ~ ( m SUSY M Pl n ) 1/( n  + 1) ~ 10 9 –5 × 10 13 GeV in the present universe, where v ( t 0 ) above 10 12 GeV requires a fine-tuning of the axion misalignment angle. We also discuss the implications of our results for the size of SUSY breaking soft masses.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP07(2014)092</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Elementary Particles ; High energy physics ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2014-07, Vol.2014 (7), p.1, Article 92</ispartof><rights>The Author(s) 2014</rights><rights>SISSA, Trieste, Italy 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-7b97cc84517864172ea57ec0b33f990e3a82012a5d25cb70432b9c3d658f951d3</citedby><cites>FETCH-LOGICAL-c417t-7b97cc84517864172ea57ec0b33f990e3a82012a5d25cb70432b9c3d658f951d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP07(2014)092$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP07(2014)092$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,42165,51551</link.rule.ids></links><search><creatorcontrib>Choi, Kiwoon</creatorcontrib><creatorcontrib>Jeong, Kwang Sik</creatorcontrib><creatorcontrib>Seo, Min-Seok</creatorcontrib><title>String theoretic QCD axions in the light of PLANCK and BICEP2</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract The QCD axion solving the strong CP problem may originate from antisymmetric tensor gauge fields in compactified string theory, with a decay constant around the GUT scale. Such possibility appears to be ruled out now by the detection of tensor modes by BICEP2 and the PLANCK constraints on isocurvature density perturbations. A more interesting and still viable possibility is that the string theoretic QCD axion is charged under an anomalous U(1) A gauge symmetry. In such case, the axion decay constant can be much lower than the GUT scale if moduli are stabilized near the point of vanishing Fayet-Illiopoulos term, and U(1) A -charged matter fields get a vacuum value v  ~ ( m SUSY M Pl n ) 1/( n  + 1) ( n ≥ 0) induced by a tachyonic SUSY breaking mass m SUSY . We examine the symmetry breaking pattern of such models during the inflationary epoch with H I ≃ 10 14 GeV, and identify the range of the QCD axion decay constant, as well as the corresponding relic axion abundance, consistent with known cosmological constraints. In addition to the case that the PQ symmetry is restored during inflation, i.e. v ( t I ) = 0, there are other viable scenarios, including that the PQ symmetry is broken during inflation with v ( t I ) ∼ (4 πH I M Pl n ) 1/( n  + 1) ~ 10 16 –10 17 GeV due to the Hubble-induced D -term D A  ~ 8 π 2 H I 2 , while v ( t 0 ) ~ ( m SUSY M Pl n ) 1/( n  + 1) ~ 10 9 –5 × 10 13 GeV in the present universe, where v ( t 0 ) above 10 12 GeV requires a fine-tuning of the axion misalignment angle. We also discuss the implications of our results for the size of SUSY breaking soft masses.</description><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kDFPwzAQhS0EEqUws1pigSH07MS1PTCUUGihgiJgthzHaVOVJNipBP8eR2HownSn03vv7j6EzglcEwA-epxNl8AvKZDkCiQ9QAMCVEYi4fJwrz9GJ95vAAgjEgbo5q11ZbXC7drWzralwa_pHdbfZV15XFbdHG_L1brFdYGXi8lz-oR1lePbeTpd0lN0VOitt2d_dYg-7qfv6SxavDzM08kiMgnhbcQzyY0RCSNcjMOEWs24NZDFcSEl2FiLcDbVLKfMZBySmGbSxPmYiUIyksdDdNHnNq7-2lnfqk29c1VYqQgHEV4mAoJq1KuMq713tlCNKz-1-1EEVMdI9YxUx0gFRsEBvcM3HQXr9nL_sfwCD3FkpA</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Choi, Kiwoon</creator><creator>Jeong, Kwang Sik</creator><creator>Seo, Min-Seok</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20140701</creationdate><title>String theoretic QCD axions in the light of PLANCK and BICEP2</title><author>Choi, Kiwoon ; Jeong, Kwang Sik ; Seo, Min-Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-7b97cc84517864172ea57ec0b33f990e3a82012a5d25cb70432b9c3d658f951d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Kiwoon</creatorcontrib><creatorcontrib>Jeong, Kwang Sik</creatorcontrib><creatorcontrib>Seo, Min-Seok</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Kiwoon</au><au>Jeong, Kwang Sik</au><au>Seo, Min-Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>String theoretic QCD axions in the light of PLANCK and BICEP2</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>2014</volume><issue>7</issue><spage>1</spage><pages>1-</pages><artnum>92</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract The QCD axion solving the strong CP problem may originate from antisymmetric tensor gauge fields in compactified string theory, with a decay constant around the GUT scale. Such possibility appears to be ruled out now by the detection of tensor modes by BICEP2 and the PLANCK constraints on isocurvature density perturbations. A more interesting and still viable possibility is that the string theoretic QCD axion is charged under an anomalous U(1) A gauge symmetry. In such case, the axion decay constant can be much lower than the GUT scale if moduli are stabilized near the point of vanishing Fayet-Illiopoulos term, and U(1) A -charged matter fields get a vacuum value v  ~ ( m SUSY M Pl n ) 1/( n  + 1) ( n ≥ 0) induced by a tachyonic SUSY breaking mass m SUSY . We examine the symmetry breaking pattern of such models during the inflationary epoch with H I ≃ 10 14 GeV, and identify the range of the QCD axion decay constant, as well as the corresponding relic axion abundance, consistent with known cosmological constraints. In addition to the case that the PQ symmetry is restored during inflation, i.e. v ( t I ) = 0, there are other viable scenarios, including that the PQ symmetry is broken during inflation with v ( t I ) ∼ (4 πH I M Pl n ) 1/( n  + 1) ~ 10 16 –10 17 GeV due to the Hubble-induced D -term D A  ~ 8 π 2 H I 2 , while v ( t 0 ) ~ ( m SUSY M Pl n ) 1/( n  + 1) ~ 10 9 –5 × 10 13 GeV in the present universe, where v ( t 0 ) above 10 12 GeV requires a fine-tuning of the axion misalignment angle. We also discuss the implications of our results for the size of SUSY breaking soft masses.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP07(2014)092</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2014-07, Vol.2014 (7), p.1, Article 92
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_journals_1708014180
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects Classical and Quantum Gravitation
Elementary Particles
High energy physics
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
String Theory
title String theoretic QCD axions in the light of PLANCK and BICEP2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=String%20theoretic%20QCD%20axions%20in%20the%20light%20of%20PLANCK%20and%20BICEP2&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Choi,%20Kiwoon&rft.date=2014-07-01&rft.volume=2014&rft.issue=7&rft.spage=1&rft.pages=1-&rft.artnum=92&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP07(2014)092&rft_dat=%3Cproquest_cross%3E3791647421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708014180&rft_id=info:pmid/&rfr_iscdi=true