Si and InGaAs Spatial Wavefunction-Switched (SWS) FETs with II–VI Gate Insulators: An Approach to the Design and Integration of Two-Bit SRAMs and Binary CMOS Logic

Electron wavefunctions are switched spatially from one quantum well to another by varying the gate voltage V g in spatial wavefunction-switched (SWS) field-effect transistors (FETs), which comprise two or more coupled quantum wells serving as the transport channel. This is shown for Si/SiGe and InGa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2015-09, Vol.44 (9), p.3108-3115
Hauptverfasser: Jain, F., Chan, P.-Y., Lingalugari, M., Kondo, J., Suarez, E., Gogna, P., Chandy, J., Heller, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3115
container_issue 9
container_start_page 3108
container_title Journal of electronic materials
container_volume 44
creator Jain, F.
Chan, P.-Y.
Lingalugari, M.
Kondo, J.
Suarez, E.
Gogna, P.
Chandy, J.
Heller, E.
description Electron wavefunctions are switched spatially from one quantum well to another by varying the gate voltage V g in spatial wavefunction-switched (SWS) field-effect transistors (FETs), which comprise two or more coupled quantum wells serving as the transport channel. This is shown for Si/SiGe and InGaAs/AlInAs quantum well systems. The presence of charge in a particular well or channel is used to encode four states 00, 01, 10, 11. This unique property is used for two-bit processing, resulting in compact two-bit static random-access memory devices. Experimental data including capacitance–voltage peaks in Si and InGaAs multiple quantum well SWS-FETs has verified the SWS phenomenon. Replacing quantum wells by an array of cladded quantum dots, forming a quantum dot superlattice (QDSL) layer, enhances the contrast and noise margin in SWS-FETs. This paper reports I – V and C – V characteristics for a fabricated twin-drain SWS-quantum dot channel (QDC) FET comprising four layers of self-assembled SiO x -Si quantum dots. SWS-QDC-FETs are shown to be scalable to ∼9 nm, and comprise four layers of cladded quantum dots with an array of 3 × 3 forming the channel.
doi_str_mv 10.1007/s11664-015-3827-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1706462089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3786851381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-84d1466a2d09f76621bc5a8046df98113690ae76dc1be5afacd57754daa6b4913</originalsourceid><addsrcrecordid>eNp1kcFuEzEQhi1EJULLA3AbiQscDJ5dr3eX2zZAWClVJbZQbpbj9Saugh1sh4ob78Az9MV4kjqkBy6cRhp9_z-_5ifkObLXyFj9JiIKwSnDipZNUVP2iMyw4iXFRnx9TGasFEiroqyekKcx3rAMYoMzcjdYUG6E3i1UF2HYqWTVFq7VDzPtnU7WOzrc2qQ3ZoSXw_XwCj68v4qQVxvo-z-_fn_pYaGSyQ5xv1XJh_gWOgfdbhe80htIHtLGwDsT7do93EpmHdTBG_wEV7eentsEw6fuIv4Fzq1T4SfMLy4HWPq11WfkZFLbaJ49zFPyOaeYf6TLy0U_75ZUl7xNtOEjciFUMbJ2qoUocKUr1TAuxqltEEvRMmVqMWpcmUpNSo9VXVd8VEqseIvlKXlx9M3Zv-9NTPLG74PLJyXWTHBRsKbNFB4pHXyMwUxyF-y3nFgik4c25LENmZ8sD21IljXFURMz69Ym_OP8X9E9EPCMPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706462089</pqid></control><display><type>article</type><title>Si and InGaAs Spatial Wavefunction-Switched (SWS) FETs with II–VI Gate Insulators: An Approach to the Design and Integration of Two-Bit SRAMs and Binary CMOS Logic</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jain, F. ; Chan, P.-Y. ; Lingalugari, M. ; Kondo, J. ; Suarez, E. ; Gogna, P. ; Chandy, J. ; Heller, E.</creator><creatorcontrib>Jain, F. ; Chan, P.-Y. ; Lingalugari, M. ; Kondo, J. ; Suarez, E. ; Gogna, P. ; Chandy, J. ; Heller, E.</creatorcontrib><description>Electron wavefunctions are switched spatially from one quantum well to another by varying the gate voltage V g in spatial wavefunction-switched (SWS) field-effect transistors (FETs), which comprise two or more coupled quantum wells serving as the transport channel. This is shown for Si/SiGe and InGaAs/AlInAs quantum well systems. The presence of charge in a particular well or channel is used to encode four states 00, 01, 10, 11. This unique property is used for two-bit processing, resulting in compact two-bit static random-access memory devices. Experimental data including capacitance–voltage peaks in Si and InGaAs multiple quantum well SWS-FETs has verified the SWS phenomenon. Replacing quantum wells by an array of cladded quantum dots, forming a quantum dot superlattice (QDSL) layer, enhances the contrast and noise margin in SWS-FETs. This paper reports I – V and C – V characteristics for a fabricated twin-drain SWS-quantum dot channel (QDC) FET comprising four layers of self-assembled SiO x -Si quantum dots. SWS-QDC-FETs are shown to be scalable to ∼9 nm, and comprise four layers of cladded quantum dots with an array of 3 × 3 forming the channel.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-015-3827-0</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; CMOS ; Electronics and Microelectronics ; Instrumentation ; Materials Science ; Optical and Electronic Materials ; Random access memory ; Solid State Physics ; Transistors</subject><ispartof>Journal of electronic materials, 2015-09, Vol.44 (9), p.3108-3115</ispartof><rights>The Minerals, Metals &amp; Materials Society 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-84d1466a2d09f76621bc5a8046df98113690ae76dc1be5afacd57754daa6b4913</citedby><cites>FETCH-LOGICAL-c349t-84d1466a2d09f76621bc5a8046df98113690ae76dc1be5afacd57754daa6b4913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-015-3827-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-015-3827-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jain, F.</creatorcontrib><creatorcontrib>Chan, P.-Y.</creatorcontrib><creatorcontrib>Lingalugari, M.</creatorcontrib><creatorcontrib>Kondo, J.</creatorcontrib><creatorcontrib>Suarez, E.</creatorcontrib><creatorcontrib>Gogna, P.</creatorcontrib><creatorcontrib>Chandy, J.</creatorcontrib><creatorcontrib>Heller, E.</creatorcontrib><title>Si and InGaAs Spatial Wavefunction-Switched (SWS) FETs with II–VI Gate Insulators: An Approach to the Design and Integration of Two-Bit SRAMs and Binary CMOS Logic</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Electron wavefunctions are switched spatially from one quantum well to another by varying the gate voltage V g in spatial wavefunction-switched (SWS) field-effect transistors (FETs), which comprise two or more coupled quantum wells serving as the transport channel. This is shown for Si/SiGe and InGaAs/AlInAs quantum well systems. The presence of charge in a particular well or channel is used to encode four states 00, 01, 10, 11. This unique property is used for two-bit processing, resulting in compact two-bit static random-access memory devices. Experimental data including capacitance–voltage peaks in Si and InGaAs multiple quantum well SWS-FETs has verified the SWS phenomenon. Replacing quantum wells by an array of cladded quantum dots, forming a quantum dot superlattice (QDSL) layer, enhances the contrast and noise margin in SWS-FETs. This paper reports I – V and C – V characteristics for a fabricated twin-drain SWS-quantum dot channel (QDC) FET comprising four layers of self-assembled SiO x -Si quantum dots. SWS-QDC-FETs are shown to be scalable to ∼9 nm, and comprise four layers of cladded quantum dots with an array of 3 × 3 forming the channel.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>CMOS</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Random access memory</subject><subject>Solid State Physics</subject><subject>Transistors</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kcFuEzEQhi1EJULLA3AbiQscDJ5dr3eX2zZAWClVJbZQbpbj9Saugh1sh4ob78Az9MV4kjqkBy6cRhp9_z-_5ifkObLXyFj9JiIKwSnDipZNUVP2iMyw4iXFRnx9TGasFEiroqyekKcx3rAMYoMzcjdYUG6E3i1UF2HYqWTVFq7VDzPtnU7WOzrc2qQ3ZoSXw_XwCj68v4qQVxvo-z-_fn_pYaGSyQ5xv1XJh_gWOgfdbhe80htIHtLGwDsT7do93EpmHdTBG_wEV7eentsEw6fuIv4Fzq1T4SfMLy4HWPq11WfkZFLbaJ49zFPyOaeYf6TLy0U_75ZUl7xNtOEjciFUMbJ2qoUocKUr1TAuxqltEEvRMmVqMWpcmUpNSo9VXVd8VEqseIvlKXlx9M3Zv-9NTPLG74PLJyXWTHBRsKbNFB4pHXyMwUxyF-y3nFgik4c25LENmZ8sD21IljXFURMz69Ym_OP8X9E9EPCMPA</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Jain, F.</creator><creator>Chan, P.-Y.</creator><creator>Lingalugari, M.</creator><creator>Kondo, J.</creator><creator>Suarez, E.</creator><creator>Gogna, P.</creator><creator>Chandy, J.</creator><creator>Heller, E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20150901</creationdate><title>Si and InGaAs Spatial Wavefunction-Switched (SWS) FETs with II–VI Gate Insulators: An Approach to the Design and Integration of Two-Bit SRAMs and Binary CMOS Logic</title><author>Jain, F. ; Chan, P.-Y. ; Lingalugari, M. ; Kondo, J. ; Suarez, E. ; Gogna, P. ; Chandy, J. ; Heller, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-84d1466a2d09f76621bc5a8046df98113690ae76dc1be5afacd57754daa6b4913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>CMOS</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Random access memory</topic><topic>Solid State Physics</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, F.</creatorcontrib><creatorcontrib>Chan, P.-Y.</creatorcontrib><creatorcontrib>Lingalugari, M.</creatorcontrib><creatorcontrib>Kondo, J.</creatorcontrib><creatorcontrib>Suarez, E.</creatorcontrib><creatorcontrib>Gogna, P.</creatorcontrib><creatorcontrib>Chandy, J.</creatorcontrib><creatorcontrib>Heller, E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, F.</au><au>Chan, P.-Y.</au><au>Lingalugari, M.</au><au>Kondo, J.</au><au>Suarez, E.</au><au>Gogna, P.</au><au>Chandy, J.</au><au>Heller, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Si and InGaAs Spatial Wavefunction-Switched (SWS) FETs with II–VI Gate Insulators: An Approach to the Design and Integration of Two-Bit SRAMs and Binary CMOS Logic</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>44</volume><issue>9</issue><spage>3108</spage><epage>3115</epage><pages>3108-3115</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Electron wavefunctions are switched spatially from one quantum well to another by varying the gate voltage V g in spatial wavefunction-switched (SWS) field-effect transistors (FETs), which comprise two or more coupled quantum wells serving as the transport channel. This is shown for Si/SiGe and InGaAs/AlInAs quantum well systems. The presence of charge in a particular well or channel is used to encode four states 00, 01, 10, 11. This unique property is used for two-bit processing, resulting in compact two-bit static random-access memory devices. Experimental data including capacitance–voltage peaks in Si and InGaAs multiple quantum well SWS-FETs has verified the SWS phenomenon. Replacing quantum wells by an array of cladded quantum dots, forming a quantum dot superlattice (QDSL) layer, enhances the contrast and noise margin in SWS-FETs. This paper reports I – V and C – V characteristics for a fabricated twin-drain SWS-quantum dot channel (QDC) FET comprising four layers of self-assembled SiO x -Si quantum dots. SWS-QDC-FETs are shown to be scalable to ∼9 nm, and comprise four layers of cladded quantum dots with an array of 3 × 3 forming the channel.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-015-3827-0</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2015-09, Vol.44 (9), p.3108-3115
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_1706462089
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
CMOS
Electronics and Microelectronics
Instrumentation
Materials Science
Optical and Electronic Materials
Random access memory
Solid State Physics
Transistors
title Si and InGaAs Spatial Wavefunction-Switched (SWS) FETs with II–VI Gate Insulators: An Approach to the Design and Integration of Two-Bit SRAMs and Binary CMOS Logic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Si%20and%20InGaAs%20Spatial%20Wavefunction-Switched%20(SWS)%20FETs%20with%20II%E2%80%93VI%20Gate%20Insulators:%20An%20Approach%20to%20the%20Design%20and%20Integration%20of%20Two-Bit%20SRAMs%20and%20Binary%20CMOS%20Logic&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Jain,%20F.&rft.date=2015-09-01&rft.volume=44&rft.issue=9&rft.spage=3108&rft.epage=3115&rft.pages=3108-3115&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-015-3827-0&rft_dat=%3Cproquest_cross%3E3786851381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1706462089&rft_id=info:pmid/&rfr_iscdi=true