Model selection in the presence of incidental parameters
This paper considers model selection in panels where incidental parameters are present. Primary interest centers on selecting a model that best approximates the underlying structure involving parameters that are common within the panel. It is well known that conventional model selection procedures a...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2015-10, Vol.188 (2), p.474-489 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 489 |
---|---|
container_issue | 2 |
container_start_page | 474 |
container_title | Journal of econometrics |
container_volume | 188 |
creator | Lee, Yoonseok Phillips, Peter C.B. |
description | This paper considers model selection in panels where incidental parameters are present. Primary interest centers on selecting a model that best approximates the underlying structure involving parameters that are common within the panel. It is well known that conventional model selection procedures are often inconsistent in panel models and this can be so even without nuisance parameters. Modifications are then needed to achieve consistency. New model selection information criteria are developed here that use either the Kullback–Leibler information criterion based on the profile likelihood or the Bayes factor based on the integrated likelihood with a bias-reducing prior. These model selection criteria impose heavier penalties than those associated with standard information criteria such as AIC and BIC. The additional penalty, which is data-dependent, properly reflects the model complexity arising from the presence of incidental parameters. A particular example is studied in detail involving lag order selection in dynamic panel models with fixed effects. The new criteria are shown to control for over/under-selection probabilities in these models and lead to consistent order selection criteria. |
doi_str_mv | 10.1016/j.jeconom.2015.03.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1705514819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407615000810</els_id><sourcerecordid>3782897341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-9c6e731f084e7805260cc02f3482aba2493a2b9a764e5d0bcdf9554ada7b73733</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BKHguvXm1aQrkcEXjLjRdUjTW0zpNDXpCP57M4x7VxcO55zL-Qi5plBRoPXtUA3owhR2FQMqK-AVUHZCVlQrVta6kadkBRxEKUDV5-QipQEApNB8RfRr6HAsEo7oFh-mwk_F8onFHDHh5LAIfZac73Ba7FjMNtodLhjTJTnr7Zjw6u-uycfjw_vmudy-Pb1s7relk1osZeNqVJz2oAUqDZLV4BywngvNbGuZaLhlbWNVLVB20Lqub6QUtrOqVVxxviY3x945hq89psUMYR-n_NJQBVJSoWmTXfLocjGkFLE3c_Q7G38MBXOAZAbzB8kcIBngJkPKubtjDvOEb4_RJOcPuzsfMxDTBf9Pwy-bAHHH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705514819</pqid></control><display><type>article</type><title>Model selection in the presence of incidental parameters</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Lee, Yoonseok ; Phillips, Peter C.B.</creator><creatorcontrib>Lee, Yoonseok ; Phillips, Peter C.B.</creatorcontrib><description>This paper considers model selection in panels where incidental parameters are present. Primary interest centers on selecting a model that best approximates the underlying structure involving parameters that are common within the panel. It is well known that conventional model selection procedures are often inconsistent in panel models and this can be so even without nuisance parameters. Modifications are then needed to achieve consistency. New model selection information criteria are developed here that use either the Kullback–Leibler information criterion based on the profile likelihood or the Bayes factor based on the integrated likelihood with a bias-reducing prior. These model selection criteria impose heavier penalties than those associated with standard information criteria such as AIC and BIC. The additional penalty, which is data-dependent, properly reflects the model complexity arising from the presence of incidental parameters. A particular example is studied in detail involving lag order selection in dynamic panel models with fixed effects. The new criteria are shown to control for over/under-selection probabilities in these models and lead to consistent order selection criteria.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2015.03.012</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>(Adaptive) model selection ; Bayesian analysis ; Bias-reducing prior ; Econometrics ; Elk ; Estimation bias ; Fixed effects ; Incidental parameters ; Integrated approach ; Integrated likelihood ; Kullback–Leibler information ; Lag order ; Parameter estimation ; Profile likelihood ; Studies</subject><ispartof>Journal of econometrics, 2015-10, Vol.188 (2), p.474-489</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Oct 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-9c6e731f084e7805260cc02f3482aba2493a2b9a764e5d0bcdf9554ada7b73733</citedby><cites>FETCH-LOGICAL-c584t-9c6e731f084e7805260cc02f3482aba2493a2b9a764e5d0bcdf9554ada7b73733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2015.03.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Lee, Yoonseok</creatorcontrib><creatorcontrib>Phillips, Peter C.B.</creatorcontrib><title>Model selection in the presence of incidental parameters</title><title>Journal of econometrics</title><description>This paper considers model selection in panels where incidental parameters are present. Primary interest centers on selecting a model that best approximates the underlying structure involving parameters that are common within the panel. It is well known that conventional model selection procedures are often inconsistent in panel models and this can be so even without nuisance parameters. Modifications are then needed to achieve consistency. New model selection information criteria are developed here that use either the Kullback–Leibler information criterion based on the profile likelihood or the Bayes factor based on the integrated likelihood with a bias-reducing prior. These model selection criteria impose heavier penalties than those associated with standard information criteria such as AIC and BIC. The additional penalty, which is data-dependent, properly reflects the model complexity arising from the presence of incidental parameters. A particular example is studied in detail involving lag order selection in dynamic panel models with fixed effects. The new criteria are shown to control for over/under-selection probabilities in these models and lead to consistent order selection criteria.</description><subject>(Adaptive) model selection</subject><subject>Bayesian analysis</subject><subject>Bias-reducing prior</subject><subject>Econometrics</subject><subject>Elk</subject><subject>Estimation bias</subject><subject>Fixed effects</subject><subject>Incidental parameters</subject><subject>Integrated approach</subject><subject>Integrated likelihood</subject><subject>Kullback–Leibler information</subject><subject>Lag order</subject><subject>Parameter estimation</subject><subject>Profile likelihood</subject><subject>Studies</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BKHguvXm1aQrkcEXjLjRdUjTW0zpNDXpCP57M4x7VxcO55zL-Qi5plBRoPXtUA3owhR2FQMqK-AVUHZCVlQrVta6kadkBRxEKUDV5-QipQEApNB8RfRr6HAsEo7oFh-mwk_F8onFHDHh5LAIfZac73Ba7FjMNtodLhjTJTnr7Zjw6u-uycfjw_vmudy-Pb1s7relk1osZeNqVJz2oAUqDZLV4BywngvNbGuZaLhlbWNVLVB20Lqub6QUtrOqVVxxviY3x945hq89psUMYR-n_NJQBVJSoWmTXfLocjGkFLE3c_Q7G38MBXOAZAbzB8kcIBngJkPKubtjDvOEb4_RJOcPuzsfMxDTBf9Pwy-bAHHH</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Lee, Yoonseok</creator><creator>Phillips, Peter C.B.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20151001</creationdate><title>Model selection in the presence of incidental parameters</title><author>Lee, Yoonseok ; Phillips, Peter C.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-9c6e731f084e7805260cc02f3482aba2493a2b9a764e5d0bcdf9554ada7b73733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>(Adaptive) model selection</topic><topic>Bayesian analysis</topic><topic>Bias-reducing prior</topic><topic>Econometrics</topic><topic>Elk</topic><topic>Estimation bias</topic><topic>Fixed effects</topic><topic>Incidental parameters</topic><topic>Integrated approach</topic><topic>Integrated likelihood</topic><topic>Kullback–Leibler information</topic><topic>Lag order</topic><topic>Parameter estimation</topic><topic>Profile likelihood</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yoonseok</creatorcontrib><creatorcontrib>Phillips, Peter C.B.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yoonseok</au><au>Phillips, Peter C.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model selection in the presence of incidental parameters</atitle><jtitle>Journal of econometrics</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>188</volume><issue>2</issue><spage>474</spage><epage>489</epage><pages>474-489</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>This paper considers model selection in panels where incidental parameters are present. Primary interest centers on selecting a model that best approximates the underlying structure involving parameters that are common within the panel. It is well known that conventional model selection procedures are often inconsistent in panel models and this can be so even without nuisance parameters. Modifications are then needed to achieve consistency. New model selection information criteria are developed here that use either the Kullback–Leibler information criterion based on the profile likelihood or the Bayes factor based on the integrated likelihood with a bias-reducing prior. These model selection criteria impose heavier penalties than those associated with standard information criteria such as AIC and BIC. The additional penalty, which is data-dependent, properly reflects the model complexity arising from the presence of incidental parameters. A particular example is studied in detail involving lag order selection in dynamic panel models with fixed effects. The new criteria are shown to control for over/under-selection probabilities in these models and lead to consistent order selection criteria.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2015.03.012</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2015-10, Vol.188 (2), p.474-489 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_journals_1705514819 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | (Adaptive) model selection Bayesian analysis Bias-reducing prior Econometrics Elk Estimation bias Fixed effects Incidental parameters Integrated approach Integrated likelihood Kullback–Leibler information Lag order Parameter estimation Profile likelihood Studies |
title | Model selection in the presence of incidental parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20selection%20in%20the%20presence%20of%20incidental%20parameters&rft.jtitle=Journal%20of%20econometrics&rft.au=Lee,%20Yoonseok&rft.date=2015-10-01&rft.volume=188&rft.issue=2&rft.spage=474&rft.epage=489&rft.pages=474-489&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2015.03.012&rft_dat=%3Cproquest_cross%3E3782897341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705514819&rft_id=info:pmid/&rft_els_id=S0304407615000810&rfr_iscdi=true |