Model selection in the presence of incidental parameters

This paper considers model selection in panels where incidental parameters are present. Primary interest centers on selecting a model that best approximates the underlying structure involving parameters that are common within the panel. It is well known that conventional model selection procedures a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2015-10, Vol.188 (2), p.474-489
Hauptverfasser: Lee, Yoonseok, Phillips, Peter C.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 489
container_issue 2
container_start_page 474
container_title Journal of econometrics
container_volume 188
creator Lee, Yoonseok
Phillips, Peter C.B.
description This paper considers model selection in panels where incidental parameters are present. Primary interest centers on selecting a model that best approximates the underlying structure involving parameters that are common within the panel. It is well known that conventional model selection procedures are often inconsistent in panel models and this can be so even without nuisance parameters. Modifications are then needed to achieve consistency. New model selection information criteria are developed here that use either the Kullback–Leibler information criterion based on the profile likelihood or the Bayes factor based on the integrated likelihood with a bias-reducing prior. These model selection criteria impose heavier penalties than those associated with standard information criteria such as AIC and BIC. The additional penalty, which is data-dependent, properly reflects the model complexity arising from the presence of incidental parameters. A particular example is studied in detail involving lag order selection in dynamic panel models with fixed effects. The new criteria are shown to control for over/under-selection probabilities in these models and lead to consistent order selection criteria.
doi_str_mv 10.1016/j.jeconom.2015.03.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1705514819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407615000810</els_id><sourcerecordid>3782897341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-9c6e731f084e7805260cc02f3482aba2493a2b9a764e5d0bcdf9554ada7b73733</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BKHguvXm1aQrkcEXjLjRdUjTW0zpNDXpCP57M4x7VxcO55zL-Qi5plBRoPXtUA3owhR2FQMqK-AVUHZCVlQrVta6kadkBRxEKUDV5-QipQEApNB8RfRr6HAsEo7oFh-mwk_F8onFHDHh5LAIfZac73Ba7FjMNtodLhjTJTnr7Zjw6u-uycfjw_vmudy-Pb1s7relk1osZeNqVJz2oAUqDZLV4BywngvNbGuZaLhlbWNVLVB20Lqub6QUtrOqVVxxviY3x945hq89psUMYR-n_NJQBVJSoWmTXfLocjGkFLE3c_Q7G38MBXOAZAbzB8kcIBngJkPKubtjDvOEb4_RJOcPuzsfMxDTBf9Pwy-bAHHH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705514819</pqid></control><display><type>article</type><title>Model selection in the presence of incidental parameters</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Lee, Yoonseok ; Phillips, Peter C.B.</creator><creatorcontrib>Lee, Yoonseok ; Phillips, Peter C.B.</creatorcontrib><description>This paper considers model selection in panels where incidental parameters are present. Primary interest centers on selecting a model that best approximates the underlying structure involving parameters that are common within the panel. It is well known that conventional model selection procedures are often inconsistent in panel models and this can be so even without nuisance parameters. Modifications are then needed to achieve consistency. New model selection information criteria are developed here that use either the Kullback–Leibler information criterion based on the profile likelihood or the Bayes factor based on the integrated likelihood with a bias-reducing prior. These model selection criteria impose heavier penalties than those associated with standard information criteria such as AIC and BIC. The additional penalty, which is data-dependent, properly reflects the model complexity arising from the presence of incidental parameters. A particular example is studied in detail involving lag order selection in dynamic panel models with fixed effects. The new criteria are shown to control for over/under-selection probabilities in these models and lead to consistent order selection criteria.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2015.03.012</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>(Adaptive) model selection ; Bayesian analysis ; Bias-reducing prior ; Econometrics ; Elk ; Estimation bias ; Fixed effects ; Incidental parameters ; Integrated approach ; Integrated likelihood ; Kullback–Leibler information ; Lag order ; Parameter estimation ; Profile likelihood ; Studies</subject><ispartof>Journal of econometrics, 2015-10, Vol.188 (2), p.474-489</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Oct 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-9c6e731f084e7805260cc02f3482aba2493a2b9a764e5d0bcdf9554ada7b73733</citedby><cites>FETCH-LOGICAL-c584t-9c6e731f084e7805260cc02f3482aba2493a2b9a764e5d0bcdf9554ada7b73733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2015.03.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Lee, Yoonseok</creatorcontrib><creatorcontrib>Phillips, Peter C.B.</creatorcontrib><title>Model selection in the presence of incidental parameters</title><title>Journal of econometrics</title><description>This paper considers model selection in panels where incidental parameters are present. Primary interest centers on selecting a model that best approximates the underlying structure involving parameters that are common within the panel. It is well known that conventional model selection procedures are often inconsistent in panel models and this can be so even without nuisance parameters. Modifications are then needed to achieve consistency. New model selection information criteria are developed here that use either the Kullback–Leibler information criterion based on the profile likelihood or the Bayes factor based on the integrated likelihood with a bias-reducing prior. These model selection criteria impose heavier penalties than those associated with standard information criteria such as AIC and BIC. The additional penalty, which is data-dependent, properly reflects the model complexity arising from the presence of incidental parameters. A particular example is studied in detail involving lag order selection in dynamic panel models with fixed effects. The new criteria are shown to control for over/under-selection probabilities in these models and lead to consistent order selection criteria.</description><subject>(Adaptive) model selection</subject><subject>Bayesian analysis</subject><subject>Bias-reducing prior</subject><subject>Econometrics</subject><subject>Elk</subject><subject>Estimation bias</subject><subject>Fixed effects</subject><subject>Incidental parameters</subject><subject>Integrated approach</subject><subject>Integrated likelihood</subject><subject>Kullback–Leibler information</subject><subject>Lag order</subject><subject>Parameter estimation</subject><subject>Profile likelihood</subject><subject>Studies</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BKHguvXm1aQrkcEXjLjRdUjTW0zpNDXpCP57M4x7VxcO55zL-Qi5plBRoPXtUA3owhR2FQMqK-AVUHZCVlQrVta6kadkBRxEKUDV5-QipQEApNB8RfRr6HAsEo7oFh-mwk_F8onFHDHh5LAIfZac73Ba7FjMNtodLhjTJTnr7Zjw6u-uycfjw_vmudy-Pb1s7relk1osZeNqVJz2oAUqDZLV4BywngvNbGuZaLhlbWNVLVB20Lqub6QUtrOqVVxxviY3x945hq89psUMYR-n_NJQBVJSoWmTXfLocjGkFLE3c_Q7G38MBXOAZAbzB8kcIBngJkPKubtjDvOEb4_RJOcPuzsfMxDTBf9Pwy-bAHHH</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Lee, Yoonseok</creator><creator>Phillips, Peter C.B.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20151001</creationdate><title>Model selection in the presence of incidental parameters</title><author>Lee, Yoonseok ; Phillips, Peter C.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-9c6e731f084e7805260cc02f3482aba2493a2b9a764e5d0bcdf9554ada7b73733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>(Adaptive) model selection</topic><topic>Bayesian analysis</topic><topic>Bias-reducing prior</topic><topic>Econometrics</topic><topic>Elk</topic><topic>Estimation bias</topic><topic>Fixed effects</topic><topic>Incidental parameters</topic><topic>Integrated approach</topic><topic>Integrated likelihood</topic><topic>Kullback–Leibler information</topic><topic>Lag order</topic><topic>Parameter estimation</topic><topic>Profile likelihood</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yoonseok</creatorcontrib><creatorcontrib>Phillips, Peter C.B.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yoonseok</au><au>Phillips, Peter C.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model selection in the presence of incidental parameters</atitle><jtitle>Journal of econometrics</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>188</volume><issue>2</issue><spage>474</spage><epage>489</epage><pages>474-489</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>This paper considers model selection in panels where incidental parameters are present. Primary interest centers on selecting a model that best approximates the underlying structure involving parameters that are common within the panel. It is well known that conventional model selection procedures are often inconsistent in panel models and this can be so even without nuisance parameters. Modifications are then needed to achieve consistency. New model selection information criteria are developed here that use either the Kullback–Leibler information criterion based on the profile likelihood or the Bayes factor based on the integrated likelihood with a bias-reducing prior. These model selection criteria impose heavier penalties than those associated with standard information criteria such as AIC and BIC. The additional penalty, which is data-dependent, properly reflects the model complexity arising from the presence of incidental parameters. A particular example is studied in detail involving lag order selection in dynamic panel models with fixed effects. The new criteria are shown to control for over/under-selection probabilities in these models and lead to consistent order selection criteria.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2015.03.012</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2015-10, Vol.188 (2), p.474-489
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_journals_1705514819
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects (Adaptive) model selection
Bayesian analysis
Bias-reducing prior
Econometrics
Elk
Estimation bias
Fixed effects
Incidental parameters
Integrated approach
Integrated likelihood
Kullback–Leibler information
Lag order
Parameter estimation
Profile likelihood
Studies
title Model selection in the presence of incidental parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20selection%20in%20the%20presence%20of%20incidental%20parameters&rft.jtitle=Journal%20of%20econometrics&rft.au=Lee,%20Yoonseok&rft.date=2015-10-01&rft.volume=188&rft.issue=2&rft.spage=474&rft.epage=489&rft.pages=474-489&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2015.03.012&rft_dat=%3Cproquest_cross%3E3782897341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705514819&rft_id=info:pmid/&rft_els_id=S0304407615000810&rfr_iscdi=true