Single Turnover Autophosphorylation Cycle of the PKA RII[Beta] Holoenzyme: e1002192
To provide tight spatiotemporal signaling control, the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) holoenzyme typically nucleates a macromolecular complex or a "PKA signalosome." Using the RII[Beta] holoenzyme as a prototype, we show how autophosphorylation/dephosp...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2015-07, Vol.13 (7) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | PLoS biology |
container_volume | 13 |
creator | Zhang, Ping Knape, Matthias J Ahuja, Lalima G Keshwani, Malik M King, Charles C Sastri, Mira Herberg, Friedrich W Taylor, Susan S |
description | To provide tight spatiotemporal signaling control, the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) holoenzyme typically nucleates a macromolecular complex or a "PKA signalosome." Using the RII[Beta] holoenzyme as a prototype, we show how autophosphorylation/dephosphorylation of the RII[Beta] subunit, as well as cAMP and metal ions, contribute to the dynamics of PKA signaling. While we showed previously that the RII[Beta] holoenzyme could undergo a single turnover autophosphorylation with adenosine triphosphate and magnesium (MgATP) and trap both products in the crystal lattice, we asked here whether calcium could trap an ATP:RII[Beta] holoenzyme since the RII[Beta] holoenzyme is located close to ion channels. The 2.8Å structure of an RII[Beta]p2:C2:(Ca2ADP)2 holoenzyme, supported by biochemical and biophysical data, reveals a trapped single phosphorylation event similar to MgATP. Thus, calcium can mediate a single turnover event with either ATP or adenosine-5'-([Beta],[gamma]-imido)triphosphate (AMP-PNP), even though it cannot support steady-state catalysis efficiently. The holoenzyme serves as a "product trap" because of the slow off-rate of the pRII[Beta] subunit, which is controlled by cAMP, not by phosphorylation of the inhibitor site. By quantitatively defining the RII[Beta] signaling cycle, we show that release of pRII[Beta] in the presence of cAMP is reduced by calcium, whereas autophosphorylation at the phosphorylation site (P-site) inhibits holoenzyme reassociation with the catalytic subunit. Adding a single phosphoryl group to the preformed RII[Beta] holoenzyme thus creates a signaling cycle in which phosphatases become an essential partner. This previously unappreciated molecular mechanism is an integral part of PKA signaling for type II holoenzymes. |
doi_str_mv | 10.1371/journal.pbio.1002192 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1704313552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3779180911</sourcerecordid><originalsourceid>FETCH-proquest_journals_17043135523</originalsourceid><addsrcrecordid>eNqNjs0KgkAUhYcoyH7eoMVAa80746AuSwqlTVS7iLCYypi85oyBPX0SPkCLw3cWH4dDyARcB7gPswdWZZ4qpzhn6IDrMghZh1ggPGH7QSC6v-7ZIfi8TwZaPxqHhSywSLLL8puSdN8s4FuWdF4ZLO6om5S1Sk2GOY3qS6PglZq7pJv1nG6T5LCQJj3SGBXK_FM_5Yj0rqnSctxySKar5T6K7aLEVyW1ObU39Ql81-PAhWD8P-sLYMtFXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1704313552</pqid></control><display><type>article</type><title>Single Turnover Autophosphorylation Cycle of the PKA RII[Beta] Holoenzyme: e1002192</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhang, Ping ; Knape, Matthias J ; Ahuja, Lalima G ; Keshwani, Malik M ; King, Charles C ; Sastri, Mira ; Herberg, Friedrich W ; Taylor, Susan S</creator><creatorcontrib>Zhang, Ping ; Knape, Matthias J ; Ahuja, Lalima G ; Keshwani, Malik M ; King, Charles C ; Sastri, Mira ; Herberg, Friedrich W ; Taylor, Susan S</creatorcontrib><description>To provide tight spatiotemporal signaling control, the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) holoenzyme typically nucleates a macromolecular complex or a "PKA signalosome." Using the RII[Beta] holoenzyme as a prototype, we show how autophosphorylation/dephosphorylation of the RII[Beta] subunit, as well as cAMP and metal ions, contribute to the dynamics of PKA signaling. While we showed previously that the RII[Beta] holoenzyme could undergo a single turnover autophosphorylation with adenosine triphosphate and magnesium (MgATP) and trap both products in the crystal lattice, we asked here whether calcium could trap an ATP:RII[Beta] holoenzyme since the RII[Beta] holoenzyme is located close to ion channels. The 2.8Å structure of an RII[Beta]p2:C2:(Ca2ADP)2 holoenzyme, supported by biochemical and biophysical data, reveals a trapped single phosphorylation event similar to MgATP. Thus, calcium can mediate a single turnover event with either ATP or adenosine-5'-([Beta],[gamma]-imido)triphosphate (AMP-PNP), even though it cannot support steady-state catalysis efficiently. The holoenzyme serves as a "product trap" because of the slow off-rate of the pRII[Beta] subunit, which is controlled by cAMP, not by phosphorylation of the inhibitor site. By quantitatively defining the RII[Beta] signaling cycle, we show that release of pRII[Beta] in the presence of cAMP is reduced by calcium, whereas autophosphorylation at the phosphorylation site (P-site) inhibits holoenzyme reassociation with the catalytic subunit. Adding a single phosphoryl group to the preformed RII[Beta] holoenzyme thus creates a signaling cycle in which phosphatases become an essential partner. This previously unappreciated molecular mechanism is an integral part of PKA signaling for type II holoenzymes.</description><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1002192</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Crystal lattices ; Data collection ; Kinases ; Laboratories ; Magnesium ; Molecular weight ; Phosphatase ; Phosphorylation ; Proteins ; Software</subject><ispartof>PLoS biology, 2015-07, Vol.13 (7)</ispartof><rights>2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Zhang P, Knape MJ, Ahuja LG, Keshwani MM, King CC, Sastri M, et al. (2015) Single Turnover Autophosphorylation Cycle of the PKA RII? Holoenzyme. PLoS Biol 13(7): e1002192. doi:10.1371/journal.pbio.1002192</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Knape, Matthias J</creatorcontrib><creatorcontrib>Ahuja, Lalima G</creatorcontrib><creatorcontrib>Keshwani, Malik M</creatorcontrib><creatorcontrib>King, Charles C</creatorcontrib><creatorcontrib>Sastri, Mira</creatorcontrib><creatorcontrib>Herberg, Friedrich W</creatorcontrib><creatorcontrib>Taylor, Susan S</creatorcontrib><title>Single Turnover Autophosphorylation Cycle of the PKA RII[Beta] Holoenzyme: e1002192</title><title>PLoS biology</title><description>To provide tight spatiotemporal signaling control, the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) holoenzyme typically nucleates a macromolecular complex or a "PKA signalosome." Using the RII[Beta] holoenzyme as a prototype, we show how autophosphorylation/dephosphorylation of the RII[Beta] subunit, as well as cAMP and metal ions, contribute to the dynamics of PKA signaling. While we showed previously that the RII[Beta] holoenzyme could undergo a single turnover autophosphorylation with adenosine triphosphate and magnesium (MgATP) and trap both products in the crystal lattice, we asked here whether calcium could trap an ATP:RII[Beta] holoenzyme since the RII[Beta] holoenzyme is located close to ion channels. The 2.8Å structure of an RII[Beta]p2:C2:(Ca2ADP)2 holoenzyme, supported by biochemical and biophysical data, reveals a trapped single phosphorylation event similar to MgATP. Thus, calcium can mediate a single turnover event with either ATP or adenosine-5'-([Beta],[gamma]-imido)triphosphate (AMP-PNP), even though it cannot support steady-state catalysis efficiently. The holoenzyme serves as a "product trap" because of the slow off-rate of the pRII[Beta] subunit, which is controlled by cAMP, not by phosphorylation of the inhibitor site. By quantitatively defining the RII[Beta] signaling cycle, we show that release of pRII[Beta] in the presence of cAMP is reduced by calcium, whereas autophosphorylation at the phosphorylation site (P-site) inhibits holoenzyme reassociation with the catalytic subunit. Adding a single phosphoryl group to the preformed RII[Beta] holoenzyme thus creates a signaling cycle in which phosphatases become an essential partner. This previously unappreciated molecular mechanism is an integral part of PKA signaling for type II holoenzymes.</description><subject>Crystal lattices</subject><subject>Data collection</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Magnesium</subject><subject>Molecular weight</subject><subject>Phosphatase</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Software</subject><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNjs0KgkAUhYcoyH7eoMVAa80746AuSwqlTVS7iLCYypi85oyBPX0SPkCLw3cWH4dDyARcB7gPswdWZZ4qpzhn6IDrMghZh1ggPGH7QSC6v-7ZIfi8TwZaPxqHhSywSLLL8puSdN8s4FuWdF4ZLO6om5S1Sk2GOY3qS6PglZq7pJv1nG6T5LCQJj3SGBXK_FM_5Yj0rqnSctxySKar5T6K7aLEVyW1ObU39Ql81-PAhWD8P-sLYMtFXQ</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Zhang, Ping</creator><creator>Knape, Matthias J</creator><creator>Ahuja, Lalima G</creator><creator>Keshwani, Malik M</creator><creator>King, Charles C</creator><creator>Sastri, Mira</creator><creator>Herberg, Friedrich W</creator><creator>Taylor, Susan S</creator><general>Public Library of Science</general><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope></search><sort><creationdate>20150701</creationdate><title>Single Turnover Autophosphorylation Cycle of the PKA RII[Beta] Holoenzyme</title><author>Zhang, Ping ; Knape, Matthias J ; Ahuja, Lalima G ; Keshwani, Malik M ; King, Charles C ; Sastri, Mira ; Herberg, Friedrich W ; Taylor, Susan S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_17043135523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Crystal lattices</topic><topic>Data collection</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Magnesium</topic><topic>Molecular weight</topic><topic>Phosphatase</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Knape, Matthias J</creatorcontrib><creatorcontrib>Ahuja, Lalima G</creatorcontrib><creatorcontrib>Keshwani, Malik M</creatorcontrib><creatorcontrib>King, Charles C</creatorcontrib><creatorcontrib>Sastri, Mira</creatorcontrib><creatorcontrib>Herberg, Friedrich W</creatorcontrib><creatorcontrib>Taylor, Susan S</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ping</au><au>Knape, Matthias J</au><au>Ahuja, Lalima G</au><au>Keshwani, Malik M</au><au>King, Charles C</au><au>Sastri, Mira</au><au>Herberg, Friedrich W</au><au>Taylor, Susan S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Turnover Autophosphorylation Cycle of the PKA RII[Beta] Holoenzyme: e1002192</atitle><jtitle>PLoS biology</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>13</volume><issue>7</issue><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>To provide tight spatiotemporal signaling control, the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) holoenzyme typically nucleates a macromolecular complex or a "PKA signalosome." Using the RII[Beta] holoenzyme as a prototype, we show how autophosphorylation/dephosphorylation of the RII[Beta] subunit, as well as cAMP and metal ions, contribute to the dynamics of PKA signaling. While we showed previously that the RII[Beta] holoenzyme could undergo a single turnover autophosphorylation with adenosine triphosphate and magnesium (MgATP) and trap both products in the crystal lattice, we asked here whether calcium could trap an ATP:RII[Beta] holoenzyme since the RII[Beta] holoenzyme is located close to ion channels. The 2.8Å structure of an RII[Beta]p2:C2:(Ca2ADP)2 holoenzyme, supported by biochemical and biophysical data, reveals a trapped single phosphorylation event similar to MgATP. Thus, calcium can mediate a single turnover event with either ATP or adenosine-5'-([Beta],[gamma]-imido)triphosphate (AMP-PNP), even though it cannot support steady-state catalysis efficiently. The holoenzyme serves as a "product trap" because of the slow off-rate of the pRII[Beta] subunit, which is controlled by cAMP, not by phosphorylation of the inhibitor site. By quantitatively defining the RII[Beta] signaling cycle, we show that release of pRII[Beta] in the presence of cAMP is reduced by calcium, whereas autophosphorylation at the phosphorylation site (P-site) inhibits holoenzyme reassociation with the catalytic subunit. Adding a single phosphoryl group to the preformed RII[Beta] holoenzyme thus creates a signaling cycle in which phosphatases become an essential partner. This previously unappreciated molecular mechanism is an integral part of PKA signaling for type II holoenzymes.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pbio.1002192</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1544-9173 |
ispartof | PLoS biology, 2015-07, Vol.13 (7) |
issn | 1544-9173 1545-7885 |
language | eng |
recordid | cdi_proquest_journals_1704313552 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Crystal lattices Data collection Kinases Laboratories Magnesium Molecular weight Phosphatase Phosphorylation Proteins Software |
title | Single Turnover Autophosphorylation Cycle of the PKA RII[Beta] Holoenzyme: e1002192 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Turnover%20Autophosphorylation%20Cycle%20of%20the%20PKA%20RII%5BBeta%5D%20Holoenzyme:%20e1002192&rft.jtitle=PLoS%20biology&rft.au=Zhang,%20Ping&rft.date=2015-07-01&rft.volume=13&rft.issue=7&rft.issn=1544-9173&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1002192&rft_dat=%3Cproquest%3E3779180911%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1704313552&rft_id=info:pmid/&rfr_iscdi=true |