The Generation of Warm Dense Matter Samples Using Fast Magnetic Compression
Our understanding of warm dense matter (WDM) properties will help to unravel the formation and evolution of giant planet, including gaseous giants or mega-Earths. However, the production of WDM in the laboratory is limited to samples on the order of tens of micrometers. This raises many challenges t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2015-08, Vol.43 (8), p.2547-2552 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2552 |
---|---|
container_issue | 8 |
container_start_page | 2547 |
container_title | IEEE transactions on plasma science |
container_volume | 43 |
creator | Gourdain, P.-A |
description | Our understanding of warm dense matter (WDM) properties will help to unravel the formation and evolution of giant planet, including gaseous giants or mega-Earths. However, the production of WDM in the laboratory is limited to samples on the order of tens of micrometers. This raises many challenges to measure the properties of WDM using standard diagnostics. In this paper, we propose a new method to produce WDM samples using pulsed-power machines. We numerically demonstrate that the early expansion phase of the sample, usually encountered in pulsed-power systems, can be virtually eliminated using a current switching scheme. To avoid mixing the plasma and WDM states, the present strategy uses a gas-puff Z-pinch as a closing plasma switch. During the first part of the discharge, most of the current flows inside a gas-puff Z-pinch, preventing the heating of the sample. During this phase, the gas Z-pinch radially converges toward the sample. When the Z-pinch finally reaches the sample, all the Z-pinch current switches to the sample and rapidly heats it. The strong azimuthal field generated by the Z-pinch prevents the expansion of the sample. If the initial gas pressure is carefully chosen, the sample reaches a quasi-homogeneous WDM state. The efficiency of the method allows one to produce millimeter-size WDM samples with a 500-kA pulser. |
doi_str_mv | 10.1109/TPS.2015.2453933 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1703586433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7174545</ieee_id><sourcerecordid>3776256021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-c3315aecca8b39c20cfc30226a72e6ef06d8befcb4c406ef13c1684dcbb4ced33</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJTvbrKNVWsaLQFo8hm87WLd0Pk_Tgvzdli6dhZp53Bh7GbgVMhIDiYfW5nMQgkkksEywQz9hIFFhEBWbJORsBFBhhLvCSXTm3AxAygXjE3lbfxOfUktW-7lreVfxL24Y_UeuIv2vvyfKlbvo9Ob52dbvlM-182Gxb8rXh067pLTkXwtfsotJ7RzenOmbr2fNq-hItPuav08dFZGSGPjKIItFkjM5LLEwMpjIIcZzqLKaUKkg3eUmVKaWREHqBRqS53JgyTGiDOGb3w93edj8Hcl7tuoNtw0slMsAkTyUeKRgoYzvnLFWqt3Wj7a8SoI7KVFCmjsrUSVmI3A2Rmoj-8UxkMgnEHwORZ9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1703586433</pqid></control><display><type>article</type><title>The Generation of Warm Dense Matter Samples Using Fast Magnetic Compression</title><source>IEEE Electronic Library (IEL)</source><creator>Gourdain, P.-A</creator><creatorcontrib>Gourdain, P.-A</creatorcontrib><description>Our understanding of warm dense matter (WDM) properties will help to unravel the formation and evolution of giant planet, including gaseous giants or mega-Earths. However, the production of WDM in the laboratory is limited to samples on the order of tens of micrometers. This raises many challenges to measure the properties of WDM using standard diagnostics. In this paper, we propose a new method to produce WDM samples using pulsed-power machines. We numerically demonstrate that the early expansion phase of the sample, usually encountered in pulsed-power systems, can be virtually eliminated using a current switching scheme. To avoid mixing the plasma and WDM states, the present strategy uses a gas-puff Z-pinch as a closing plasma switch. During the first part of the discharge, most of the current flows inside a gas-puff Z-pinch, preventing the heating of the sample. During this phase, the gas Z-pinch radially converges toward the sample. When the Z-pinch finally reaches the sample, all the Z-pinch current switches to the sample and rapidly heats it. The strong azimuthal field generated by the Z-pinch prevents the expansion of the sample. If the initial gas pressure is carefully chosen, the sample reaches a quasi-homogeneous WDM state. The efficiency of the method allows one to produce millimeter-size WDM samples with a 500-kA pulser.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2015.2453933</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Discharges (electric) ; Electric currents ; Generators ; Heating ; High energy density plasmas ; Magnetism ; Plasma ; Plasma temperature ; Switches ; Switching ; warm dense matter ; Wavelength division multiplexing</subject><ispartof>IEEE transactions on plasma science, 2015-08, Vol.43 (8), p.2547-2552</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-c3315aecca8b39c20cfc30226a72e6ef06d8befcb4c406ef13c1684dcbb4ced33</citedby><cites>FETCH-LOGICAL-c473t-c3315aecca8b39c20cfc30226a72e6ef06d8befcb4c406ef13c1684dcbb4ced33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7174545$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7174545$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gourdain, P.-A</creatorcontrib><title>The Generation of Warm Dense Matter Samples Using Fast Magnetic Compression</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Our understanding of warm dense matter (WDM) properties will help to unravel the formation and evolution of giant planet, including gaseous giants or mega-Earths. However, the production of WDM in the laboratory is limited to samples on the order of tens of micrometers. This raises many challenges to measure the properties of WDM using standard diagnostics. In this paper, we propose a new method to produce WDM samples using pulsed-power machines. We numerically demonstrate that the early expansion phase of the sample, usually encountered in pulsed-power systems, can be virtually eliminated using a current switching scheme. To avoid mixing the plasma and WDM states, the present strategy uses a gas-puff Z-pinch as a closing plasma switch. During the first part of the discharge, most of the current flows inside a gas-puff Z-pinch, preventing the heating of the sample. During this phase, the gas Z-pinch radially converges toward the sample. When the Z-pinch finally reaches the sample, all the Z-pinch current switches to the sample and rapidly heats it. The strong azimuthal field generated by the Z-pinch prevents the expansion of the sample. If the initial gas pressure is carefully chosen, the sample reaches a quasi-homogeneous WDM state. The efficiency of the method allows one to produce millimeter-size WDM samples with a 500-kA pulser.</description><subject>Discharges (electric)</subject><subject>Electric currents</subject><subject>Generators</subject><subject>Heating</subject><subject>High energy density plasmas</subject><subject>Magnetism</subject><subject>Plasma</subject><subject>Plasma temperature</subject><subject>Switches</subject><subject>Switching</subject><subject>warm dense matter</subject><subject>Wavelength division multiplexing</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJTvbrKNVWsaLQFo8hm87WLd0Pk_Tgvzdli6dhZp53Bh7GbgVMhIDiYfW5nMQgkkksEywQz9hIFFhEBWbJORsBFBhhLvCSXTm3AxAygXjE3lbfxOfUktW-7lreVfxL24Y_UeuIv2vvyfKlbvo9Ob52dbvlM-182Gxb8rXh067pLTkXwtfsotJ7RzenOmbr2fNq-hItPuav08dFZGSGPjKIItFkjM5LLEwMpjIIcZzqLKaUKkg3eUmVKaWREHqBRqS53JgyTGiDOGb3w93edj8Hcl7tuoNtw0slMsAkTyUeKRgoYzvnLFWqt3Wj7a8SoI7KVFCmjsrUSVmI3A2Rmoj-8UxkMgnEHwORZ9A</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Gourdain, P.-A</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150801</creationdate><title>The Generation of Warm Dense Matter Samples Using Fast Magnetic Compression</title><author>Gourdain, P.-A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-c3315aecca8b39c20cfc30226a72e6ef06d8befcb4c406ef13c1684dcbb4ced33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Discharges (electric)</topic><topic>Electric currents</topic><topic>Generators</topic><topic>Heating</topic><topic>High energy density plasmas</topic><topic>Magnetism</topic><topic>Plasma</topic><topic>Plasma temperature</topic><topic>Switches</topic><topic>Switching</topic><topic>warm dense matter</topic><topic>Wavelength division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gourdain, P.-A</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gourdain, P.-A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Generation of Warm Dense Matter Samples Using Fast Magnetic Compression</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>43</volume><issue>8</issue><spage>2547</spage><epage>2552</epage><pages>2547-2552</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Our understanding of warm dense matter (WDM) properties will help to unravel the formation and evolution of giant planet, including gaseous giants or mega-Earths. However, the production of WDM in the laboratory is limited to samples on the order of tens of micrometers. This raises many challenges to measure the properties of WDM using standard diagnostics. In this paper, we propose a new method to produce WDM samples using pulsed-power machines. We numerically demonstrate that the early expansion phase of the sample, usually encountered in pulsed-power systems, can be virtually eliminated using a current switching scheme. To avoid mixing the plasma and WDM states, the present strategy uses a gas-puff Z-pinch as a closing plasma switch. During the first part of the discharge, most of the current flows inside a gas-puff Z-pinch, preventing the heating of the sample. During this phase, the gas Z-pinch radially converges toward the sample. When the Z-pinch finally reaches the sample, all the Z-pinch current switches to the sample and rapidly heats it. The strong azimuthal field generated by the Z-pinch prevents the expansion of the sample. If the initial gas pressure is carefully chosen, the sample reaches a quasi-homogeneous WDM state. The efficiency of the method allows one to produce millimeter-size WDM samples with a 500-kA pulser.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2015.2453933</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2015-08, Vol.43 (8), p.2547-2552 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_proquest_journals_1703586433 |
source | IEEE Electronic Library (IEL) |
subjects | Discharges (electric) Electric currents Generators Heating High energy density plasmas Magnetism Plasma Plasma temperature Switches Switching warm dense matter Wavelength division multiplexing |
title | The Generation of Warm Dense Matter Samples Using Fast Magnetic Compression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Generation%20of%20Warm%20Dense%20Matter%20Samples%20Using%20Fast%20Magnetic%20Compression&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Gourdain,%20P.-A&rft.date=2015-08-01&rft.volume=43&rft.issue=8&rft.spage=2547&rft.epage=2552&rft.pages=2547-2552&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2015.2453933&rft_dat=%3Cproquest_RIE%3E3776256021%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1703586433&rft_id=info:pmid/&rft_ieee_id=7174545&rfr_iscdi=true |