Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots
The interesting transport and magnetic properties in manganites depend sensitively on the nucleation and growth of electronic phase-separated domains. By fabricating antidot arrays in La0.325Pr0.3Ca0.375MnO₃ (LPCMO) epitaxial thin films, we create ordered arrays of micrometer-sized ferromagnetic met...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-08, Vol.112 (31), p.9558-9562 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9562 |
---|---|
container_issue | 31 |
container_start_page | 9558 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Zhang, Kai Du, Kai Liu, Hao Zhang, X.-G. Lan, Fanli Lin, Hanxuan Wei, Wengang Zhu, Yinyan Kou, Yunfang Shao, Jian Niu, Jiebin Wang, Wenbin Wu, Ruqian Yin, Lifeng Plummer, E. W. Shen, Jian |
description | The interesting transport and magnetic properties in manganites depend sensitively on the nucleation and growth of electronic phase-separated domains. By fabricating antidot arrays in La0.325Pr0.3Ca0.375MnO₃ (LPCMO) epitaxial thin films, we create ordered arrays of micrometer-sized ferromagnetic metallic (FMM) rings in the LPCMO films that lead to dramatically increased metal–insulator transition temperatures and reduced resistances. The FMM rings emerge from the edges of the antidots where the lattice symmetry is broken. Based on our Monte Carlo simulation, these FMM rings assist the nucleation and growth of FMM phase domains increasing the metal–insulator transition with decreasing temperature or increasing magnetic field. This study points to a way in which electronic phase separation in manganites can be artificially controlled without changing chemical composition or applying external field. |
doi_str_mv | 10.1073/pnas.1512326112 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1702875056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26464262</jstor_id><sourcerecordid>26464262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-b6d038898960f7ed5c33092f40df84cff4af28bca9846aa87d693d8a6c435efb3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEokvhzAmwyoVLWn_HviChii-piAucLa_tbLzK2sF2Cvvf12GXpXCyNPN7zzPzmuY5gpcIduRqCjpfIoYwwRwh_KBZIShRy6mED5sVhLhrBcX0rHmS8xZCKJmAj5uzCkvWSbRqhi86-GkedfFhA9zoTEkxeAOmQWcHspt0qr0YgA8gL73NuAcmpuSqxlkQf3nrMvjpywB0ADFZl2pZp6T3IPa1VryNJT9tHvV6zO7Z8T1vvn94_-36U3vz9ePn63c3raGSlnbNLSRCSCE57DtnmSEEStxTaHtBTd9T3WOxNloKyrUWneWSWKG5oYS5fk3Om7cH32le75w1LpSkRzUlv9Npr6L26t9O8IPaxFtFGaGYwGpwcTCIuXiVjS_ODCaGUE-jEKECQ1GhN8dfUvwxu1zUzmfjxlEHF-esUAdxDaLji9_r_9BtnFOoN_hNiY5Bxit1daBMijkn158mRlAtUaslavU36qp4eX_RE_8n2wq8OgKL8mSHsCJIScaWLV4ciG0uMd1zoJxijskdvIG65g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702875056</pqid></control><display><type>article</type><title>Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Kai ; Du, Kai ; Liu, Hao ; Zhang, X.-G. ; Lan, Fanli ; Lin, Hanxuan ; Wei, Wengang ; Zhu, Yinyan ; Kou, Yunfang ; Shao, Jian ; Niu, Jiebin ; Wang, Wenbin ; Wu, Ruqian ; Yin, Lifeng ; Plummer, E. W. ; Shen, Jian</creator><creatorcontrib>Zhang, Kai ; Du, Kai ; Liu, Hao ; Zhang, X.-G. ; Lan, Fanli ; Lin, Hanxuan ; Wei, Wengang ; Zhu, Yinyan ; Kou, Yunfang ; Shao, Jian ; Niu, Jiebin ; Wang, Wenbin ; Wu, Ruqian ; Yin, Lifeng ; Plummer, E. W. ; Shen, Jian ; Louisiana State Univ., Baton Rouge, LA (United States)</creatorcontrib><description>The interesting transport and magnetic properties in manganites depend sensitively on the nucleation and growth of electronic phase-separated domains. By fabricating antidot arrays in La0.325Pr0.3Ca0.375MnO₃ (LPCMO) epitaxial thin films, we create ordered arrays of micrometer-sized ferromagnetic metallic (FMM) rings in the LPCMO films that lead to dramatically increased metal–insulator transition temperatures and reduced resistances. The FMM rings emerge from the edges of the antidots where the lattice symmetry is broken. Based on our Monte Carlo simulation, these FMM rings assist the nucleation and growth of FMM phase domains increasing the metal–insulator transition with decreasing temperature or increasing magnetic field. This study points to a way in which electronic phase separation in manganites can be artificially controlled without changing chemical composition or applying external field.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1512326112</identifier><identifier>PMID: 26195791</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>antidot ; Arrays ; Correlation analysis ; electronic phase separation ; Electrons ; Lattice theory ; magnetization ; manganites ; MATERIALS SCIENCE ; metal–insulator transition ; Monte Carlo simulation ; Physical Sciences ; Symmetry ; Thin films</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-08, Vol.112 (31), p.9558-9562</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 4, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-b6d038898960f7ed5c33092f40df84cff4af28bca9846aa87d693d8a6c435efb3</citedby><cites>FETCH-LOGICAL-c494t-b6d038898960f7ed5c33092f40df84cff4af28bca9846aa87d693d8a6c435efb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/31.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26464262$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26464262$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26195791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1348208$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Du, Kai</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Zhang, X.-G.</creatorcontrib><creatorcontrib>Lan, Fanli</creatorcontrib><creatorcontrib>Lin, Hanxuan</creatorcontrib><creatorcontrib>Wei, Wengang</creatorcontrib><creatorcontrib>Zhu, Yinyan</creatorcontrib><creatorcontrib>Kou, Yunfang</creatorcontrib><creatorcontrib>Shao, Jian</creatorcontrib><creatorcontrib>Niu, Jiebin</creatorcontrib><creatorcontrib>Wang, Wenbin</creatorcontrib><creatorcontrib>Wu, Ruqian</creatorcontrib><creatorcontrib>Yin, Lifeng</creatorcontrib><creatorcontrib>Plummer, E. W.</creatorcontrib><creatorcontrib>Shen, Jian</creatorcontrib><creatorcontrib>Louisiana State Univ., Baton Rouge, LA (United States)</creatorcontrib><title>Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The interesting transport and magnetic properties in manganites depend sensitively on the nucleation and growth of electronic phase-separated domains. By fabricating antidot arrays in La0.325Pr0.3Ca0.375MnO₃ (LPCMO) epitaxial thin films, we create ordered arrays of micrometer-sized ferromagnetic metallic (FMM) rings in the LPCMO films that lead to dramatically increased metal–insulator transition temperatures and reduced resistances. The FMM rings emerge from the edges of the antidots where the lattice symmetry is broken. Based on our Monte Carlo simulation, these FMM rings assist the nucleation and growth of FMM phase domains increasing the metal–insulator transition with decreasing temperature or increasing magnetic field. This study points to a way in which electronic phase separation in manganites can be artificially controlled without changing chemical composition or applying external field.</description><subject>antidot</subject><subject>Arrays</subject><subject>Correlation analysis</subject><subject>electronic phase separation</subject><subject>Electrons</subject><subject>Lattice theory</subject><subject>magnetization</subject><subject>manganites</subject><subject>MATERIALS SCIENCE</subject><subject>metal–insulator transition</subject><subject>Monte Carlo simulation</subject><subject>Physical Sciences</subject><subject>Symmetry</subject><subject>Thin films</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxSMEokvhzAmwyoVLWn_HviChii-piAucLa_tbLzK2sF2Cvvf12GXpXCyNPN7zzPzmuY5gpcIduRqCjpfIoYwwRwh_KBZIShRy6mED5sVhLhrBcX0rHmS8xZCKJmAj5uzCkvWSbRqhi86-GkedfFhA9zoTEkxeAOmQWcHspt0qr0YgA8gL73NuAcmpuSqxlkQf3nrMvjpywB0ADFZl2pZp6T3IPa1VryNJT9tHvV6zO7Z8T1vvn94_-36U3vz9ePn63c3raGSlnbNLSRCSCE57DtnmSEEStxTaHtBTd9T3WOxNloKyrUWneWSWKG5oYS5fk3Om7cH32le75w1LpSkRzUlv9Npr6L26t9O8IPaxFtFGaGYwGpwcTCIuXiVjS_ODCaGUE-jEKECQ1GhN8dfUvwxu1zUzmfjxlEHF-esUAdxDaLji9_r_9BtnFOoN_hNiY5Bxit1daBMijkn158mRlAtUaslavU36qp4eX_RE_8n2wq8OgKL8mSHsCJIScaWLV4ciG0uMd1zoJxijskdvIG65g</recordid><startdate>20150804</startdate><enddate>20150804</enddate><creator>Zhang, Kai</creator><creator>Du, Kai</creator><creator>Liu, Hao</creator><creator>Zhang, X.-G.</creator><creator>Lan, Fanli</creator><creator>Lin, Hanxuan</creator><creator>Wei, Wengang</creator><creator>Zhu, Yinyan</creator><creator>Kou, Yunfang</creator><creator>Shao, Jian</creator><creator>Niu, Jiebin</creator><creator>Wang, Wenbin</creator><creator>Wu, Ruqian</creator><creator>Yin, Lifeng</creator><creator>Plummer, E. W.</creator><creator>Shen, Jian</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>National Academy of Sciences, Washington, DC (United States)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20150804</creationdate><title>Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots</title><author>Zhang, Kai ; Du, Kai ; Liu, Hao ; Zhang, X.-G. ; Lan, Fanli ; Lin, Hanxuan ; Wei, Wengang ; Zhu, Yinyan ; Kou, Yunfang ; Shao, Jian ; Niu, Jiebin ; Wang, Wenbin ; Wu, Ruqian ; Yin, Lifeng ; Plummer, E. W. ; Shen, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-b6d038898960f7ed5c33092f40df84cff4af28bca9846aa87d693d8a6c435efb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>antidot</topic><topic>Arrays</topic><topic>Correlation analysis</topic><topic>electronic phase separation</topic><topic>Electrons</topic><topic>Lattice theory</topic><topic>magnetization</topic><topic>manganites</topic><topic>MATERIALS SCIENCE</topic><topic>metal–insulator transition</topic><topic>Monte Carlo simulation</topic><topic>Physical Sciences</topic><topic>Symmetry</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Du, Kai</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Zhang, X.-G.</creatorcontrib><creatorcontrib>Lan, Fanli</creatorcontrib><creatorcontrib>Lin, Hanxuan</creatorcontrib><creatorcontrib>Wei, Wengang</creatorcontrib><creatorcontrib>Zhu, Yinyan</creatorcontrib><creatorcontrib>Kou, Yunfang</creatorcontrib><creatorcontrib>Shao, Jian</creatorcontrib><creatorcontrib>Niu, Jiebin</creatorcontrib><creatorcontrib>Wang, Wenbin</creatorcontrib><creatorcontrib>Wu, Ruqian</creatorcontrib><creatorcontrib>Yin, Lifeng</creatorcontrib><creatorcontrib>Plummer, E. W.</creatorcontrib><creatorcontrib>Shen, Jian</creatorcontrib><creatorcontrib>Louisiana State Univ., Baton Rouge, LA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kai</au><au>Du, Kai</au><au>Liu, Hao</au><au>Zhang, X.-G.</au><au>Lan, Fanli</au><au>Lin, Hanxuan</au><au>Wei, Wengang</au><au>Zhu, Yinyan</au><au>Kou, Yunfang</au><au>Shao, Jian</au><au>Niu, Jiebin</au><au>Wang, Wenbin</au><au>Wu, Ruqian</au><au>Yin, Lifeng</au><au>Plummer, E. W.</au><au>Shen, Jian</au><aucorp>Louisiana State Univ., Baton Rouge, LA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-08-04</date><risdate>2015</risdate><volume>112</volume><issue>31</issue><spage>9558</spage><epage>9562</epage><pages>9558-9562</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The interesting transport and magnetic properties in manganites depend sensitively on the nucleation and growth of electronic phase-separated domains. By fabricating antidot arrays in La0.325Pr0.3Ca0.375MnO₃ (LPCMO) epitaxial thin films, we create ordered arrays of micrometer-sized ferromagnetic metallic (FMM) rings in the LPCMO films that lead to dramatically increased metal–insulator transition temperatures and reduced resistances. The FMM rings emerge from the edges of the antidots where the lattice symmetry is broken. Based on our Monte Carlo simulation, these FMM rings assist the nucleation and growth of FMM phase domains increasing the metal–insulator transition with decreasing temperature or increasing magnetic field. This study points to a way in which electronic phase separation in manganites can be artificially controlled without changing chemical composition or applying external field.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26195791</pmid><doi>10.1073/pnas.1512326112</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-08, Vol.112 (31), p.9558-9562 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1702875056 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | antidot Arrays Correlation analysis electronic phase separation Electrons Lattice theory magnetization manganites MATERIALS SCIENCE metal–insulator transition Monte Carlo simulation Physical Sciences Symmetry Thin films |
title | Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A16%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20electronic%20phase%20separation%20in%20strongly%20correlated%20oxides%20with%20an%20ordered%20array%20of%20antidots&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zhang,%20Kai&rft.aucorp=Louisiana%20State%20Univ.,%20Baton%20Rouge,%20LA%20(United%20States)&rft.date=2015-08-04&rft.volume=112&rft.issue=31&rft.spage=9558&rft.epage=9562&rft.pages=9558-9562&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1512326112&rft_dat=%3Cjstor_proqu%3E26464262%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1702875056&rft_id=info:pmid/26195791&rft_jstor_id=26464262&rfr_iscdi=true |