Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots

The interesting transport and magnetic properties in manganites depend sensitively on the nucleation and growth of electronic phase-separated domains. By fabricating antidot arrays in La0.325Pr0.3Ca0.375MnO₃ (LPCMO) epitaxial thin films, we create ordered arrays of micrometer-sized ferromagnetic met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-08, Vol.112 (31), p.9558-9562
Hauptverfasser: Zhang, Kai, Du, Kai, Liu, Hao, Zhang, X.-G., Lan, Fanli, Lin, Hanxuan, Wei, Wengang, Zhu, Yinyan, Kou, Yunfang, Shao, Jian, Niu, Jiebin, Wang, Wenbin, Wu, Ruqian, Yin, Lifeng, Plummer, E. W., Shen, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9562
container_issue 31
container_start_page 9558
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Zhang, Kai
Du, Kai
Liu, Hao
Zhang, X.-G.
Lan, Fanli
Lin, Hanxuan
Wei, Wengang
Zhu, Yinyan
Kou, Yunfang
Shao, Jian
Niu, Jiebin
Wang, Wenbin
Wu, Ruqian
Yin, Lifeng
Plummer, E. W.
Shen, Jian
description The interesting transport and magnetic properties in manganites depend sensitively on the nucleation and growth of electronic phase-separated domains. By fabricating antidot arrays in La0.325Pr0.3Ca0.375MnO₃ (LPCMO) epitaxial thin films, we create ordered arrays of micrometer-sized ferromagnetic metallic (FMM) rings in the LPCMO films that lead to dramatically increased metal–insulator transition temperatures and reduced resistances. The FMM rings emerge from the edges of the antidots where the lattice symmetry is broken. Based on our Monte Carlo simulation, these FMM rings assist the nucleation and growth of FMM phase domains increasing the metal–insulator transition with decreasing temperature or increasing magnetic field. This study points to a way in which electronic phase separation in manganites can be artificially controlled without changing chemical composition or applying external field.
doi_str_mv 10.1073/pnas.1512326112
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1702875056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26464262</jstor_id><sourcerecordid>26464262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-b6d038898960f7ed5c33092f40df84cff4af28bca9846aa87d693d8a6c435efb3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEokvhzAmwyoVLWn_HviChii-piAucLa_tbLzK2sF2Cvvf12GXpXCyNPN7zzPzmuY5gpcIduRqCjpfIoYwwRwh_KBZIShRy6mED5sVhLhrBcX0rHmS8xZCKJmAj5uzCkvWSbRqhi86-GkedfFhA9zoTEkxeAOmQWcHspt0qr0YgA8gL73NuAcmpuSqxlkQf3nrMvjpywB0ADFZl2pZp6T3IPa1VryNJT9tHvV6zO7Z8T1vvn94_-36U3vz9ePn63c3raGSlnbNLSRCSCE57DtnmSEEStxTaHtBTd9T3WOxNloKyrUWneWSWKG5oYS5fk3Om7cH32le75w1LpSkRzUlv9Npr6L26t9O8IPaxFtFGaGYwGpwcTCIuXiVjS_ODCaGUE-jEKECQ1GhN8dfUvwxu1zUzmfjxlEHF-esUAdxDaLji9_r_9BtnFOoN_hNiY5Bxit1daBMijkn158mRlAtUaslavU36qp4eX_RE_8n2wq8OgKL8mSHsCJIScaWLV4ciG0uMd1zoJxijskdvIG65g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702875056</pqid></control><display><type>article</type><title>Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Kai ; Du, Kai ; Liu, Hao ; Zhang, X.-G. ; Lan, Fanli ; Lin, Hanxuan ; Wei, Wengang ; Zhu, Yinyan ; Kou, Yunfang ; Shao, Jian ; Niu, Jiebin ; Wang, Wenbin ; Wu, Ruqian ; Yin, Lifeng ; Plummer, E. W. ; Shen, Jian</creator><creatorcontrib>Zhang, Kai ; Du, Kai ; Liu, Hao ; Zhang, X.-G. ; Lan, Fanli ; Lin, Hanxuan ; Wei, Wengang ; Zhu, Yinyan ; Kou, Yunfang ; Shao, Jian ; Niu, Jiebin ; Wang, Wenbin ; Wu, Ruqian ; Yin, Lifeng ; Plummer, E. W. ; Shen, Jian ; Louisiana State Univ., Baton Rouge, LA (United States)</creatorcontrib><description>The interesting transport and magnetic properties in manganites depend sensitively on the nucleation and growth of electronic phase-separated domains. By fabricating antidot arrays in La0.325Pr0.3Ca0.375MnO₃ (LPCMO) epitaxial thin films, we create ordered arrays of micrometer-sized ferromagnetic metallic (FMM) rings in the LPCMO films that lead to dramatically increased metal–insulator transition temperatures and reduced resistances. The FMM rings emerge from the edges of the antidots where the lattice symmetry is broken. Based on our Monte Carlo simulation, these FMM rings assist the nucleation and growth of FMM phase domains increasing the metal–insulator transition with decreasing temperature or increasing magnetic field. This study points to a way in which electronic phase separation in manganites can be artificially controlled without changing chemical composition or applying external field.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1512326112</identifier><identifier>PMID: 26195791</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>antidot ; Arrays ; Correlation analysis ; electronic phase separation ; Electrons ; Lattice theory ; magnetization ; manganites ; MATERIALS SCIENCE ; metal–insulator transition ; Monte Carlo simulation ; Physical Sciences ; Symmetry ; Thin films</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-08, Vol.112 (31), p.9558-9562</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 4, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-b6d038898960f7ed5c33092f40df84cff4af28bca9846aa87d693d8a6c435efb3</citedby><cites>FETCH-LOGICAL-c494t-b6d038898960f7ed5c33092f40df84cff4af28bca9846aa87d693d8a6c435efb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/31.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26464262$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26464262$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26195791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1348208$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Du, Kai</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Zhang, X.-G.</creatorcontrib><creatorcontrib>Lan, Fanli</creatorcontrib><creatorcontrib>Lin, Hanxuan</creatorcontrib><creatorcontrib>Wei, Wengang</creatorcontrib><creatorcontrib>Zhu, Yinyan</creatorcontrib><creatorcontrib>Kou, Yunfang</creatorcontrib><creatorcontrib>Shao, Jian</creatorcontrib><creatorcontrib>Niu, Jiebin</creatorcontrib><creatorcontrib>Wang, Wenbin</creatorcontrib><creatorcontrib>Wu, Ruqian</creatorcontrib><creatorcontrib>Yin, Lifeng</creatorcontrib><creatorcontrib>Plummer, E. W.</creatorcontrib><creatorcontrib>Shen, Jian</creatorcontrib><creatorcontrib>Louisiana State Univ., Baton Rouge, LA (United States)</creatorcontrib><title>Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The interesting transport and magnetic properties in manganites depend sensitively on the nucleation and growth of electronic phase-separated domains. By fabricating antidot arrays in La0.325Pr0.3Ca0.375MnO₃ (LPCMO) epitaxial thin films, we create ordered arrays of micrometer-sized ferromagnetic metallic (FMM) rings in the LPCMO films that lead to dramatically increased metal–insulator transition temperatures and reduced resistances. The FMM rings emerge from the edges of the antidots where the lattice symmetry is broken. Based on our Monte Carlo simulation, these FMM rings assist the nucleation and growth of FMM phase domains increasing the metal–insulator transition with decreasing temperature or increasing magnetic field. This study points to a way in which electronic phase separation in manganites can be artificially controlled without changing chemical composition or applying external field.</description><subject>antidot</subject><subject>Arrays</subject><subject>Correlation analysis</subject><subject>electronic phase separation</subject><subject>Electrons</subject><subject>Lattice theory</subject><subject>magnetization</subject><subject>manganites</subject><subject>MATERIALS SCIENCE</subject><subject>metal–insulator transition</subject><subject>Monte Carlo simulation</subject><subject>Physical Sciences</subject><subject>Symmetry</subject><subject>Thin films</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxSMEokvhzAmwyoVLWn_HviChii-piAucLa_tbLzK2sF2Cvvf12GXpXCyNPN7zzPzmuY5gpcIduRqCjpfIoYwwRwh_KBZIShRy6mED5sVhLhrBcX0rHmS8xZCKJmAj5uzCkvWSbRqhi86-GkedfFhA9zoTEkxeAOmQWcHspt0qr0YgA8gL73NuAcmpuSqxlkQf3nrMvjpywB0ADFZl2pZp6T3IPa1VryNJT9tHvV6zO7Z8T1vvn94_-36U3vz9ePn63c3raGSlnbNLSRCSCE57DtnmSEEStxTaHtBTd9T3WOxNloKyrUWneWSWKG5oYS5fk3Om7cH32le75w1LpSkRzUlv9Npr6L26t9O8IPaxFtFGaGYwGpwcTCIuXiVjS_ODCaGUE-jEKECQ1GhN8dfUvwxu1zUzmfjxlEHF-esUAdxDaLji9_r_9BtnFOoN_hNiY5Bxit1daBMijkn158mRlAtUaslavU36qp4eX_RE_8n2wq8OgKL8mSHsCJIScaWLV4ciG0uMd1zoJxijskdvIG65g</recordid><startdate>20150804</startdate><enddate>20150804</enddate><creator>Zhang, Kai</creator><creator>Du, Kai</creator><creator>Liu, Hao</creator><creator>Zhang, X.-G.</creator><creator>Lan, Fanli</creator><creator>Lin, Hanxuan</creator><creator>Wei, Wengang</creator><creator>Zhu, Yinyan</creator><creator>Kou, Yunfang</creator><creator>Shao, Jian</creator><creator>Niu, Jiebin</creator><creator>Wang, Wenbin</creator><creator>Wu, Ruqian</creator><creator>Yin, Lifeng</creator><creator>Plummer, E. W.</creator><creator>Shen, Jian</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>National Academy of Sciences, Washington, DC (United States)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20150804</creationdate><title>Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots</title><author>Zhang, Kai ; Du, Kai ; Liu, Hao ; Zhang, X.-G. ; Lan, Fanli ; Lin, Hanxuan ; Wei, Wengang ; Zhu, Yinyan ; Kou, Yunfang ; Shao, Jian ; Niu, Jiebin ; Wang, Wenbin ; Wu, Ruqian ; Yin, Lifeng ; Plummer, E. W. ; Shen, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-b6d038898960f7ed5c33092f40df84cff4af28bca9846aa87d693d8a6c435efb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>antidot</topic><topic>Arrays</topic><topic>Correlation analysis</topic><topic>electronic phase separation</topic><topic>Electrons</topic><topic>Lattice theory</topic><topic>magnetization</topic><topic>manganites</topic><topic>MATERIALS SCIENCE</topic><topic>metal–insulator transition</topic><topic>Monte Carlo simulation</topic><topic>Physical Sciences</topic><topic>Symmetry</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Du, Kai</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Zhang, X.-G.</creatorcontrib><creatorcontrib>Lan, Fanli</creatorcontrib><creatorcontrib>Lin, Hanxuan</creatorcontrib><creatorcontrib>Wei, Wengang</creatorcontrib><creatorcontrib>Zhu, Yinyan</creatorcontrib><creatorcontrib>Kou, Yunfang</creatorcontrib><creatorcontrib>Shao, Jian</creatorcontrib><creatorcontrib>Niu, Jiebin</creatorcontrib><creatorcontrib>Wang, Wenbin</creatorcontrib><creatorcontrib>Wu, Ruqian</creatorcontrib><creatorcontrib>Yin, Lifeng</creatorcontrib><creatorcontrib>Plummer, E. W.</creatorcontrib><creatorcontrib>Shen, Jian</creatorcontrib><creatorcontrib>Louisiana State Univ., Baton Rouge, LA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kai</au><au>Du, Kai</au><au>Liu, Hao</au><au>Zhang, X.-G.</au><au>Lan, Fanli</au><au>Lin, Hanxuan</au><au>Wei, Wengang</au><au>Zhu, Yinyan</au><au>Kou, Yunfang</au><au>Shao, Jian</au><au>Niu, Jiebin</au><au>Wang, Wenbin</au><au>Wu, Ruqian</au><au>Yin, Lifeng</au><au>Plummer, E. W.</au><au>Shen, Jian</au><aucorp>Louisiana State Univ., Baton Rouge, LA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-08-04</date><risdate>2015</risdate><volume>112</volume><issue>31</issue><spage>9558</spage><epage>9562</epage><pages>9558-9562</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The interesting transport and magnetic properties in manganites depend sensitively on the nucleation and growth of electronic phase-separated domains. By fabricating antidot arrays in La0.325Pr0.3Ca0.375MnO₃ (LPCMO) epitaxial thin films, we create ordered arrays of micrometer-sized ferromagnetic metallic (FMM) rings in the LPCMO films that lead to dramatically increased metal–insulator transition temperatures and reduced resistances. The FMM rings emerge from the edges of the antidots where the lattice symmetry is broken. Based on our Monte Carlo simulation, these FMM rings assist the nucleation and growth of FMM phase domains increasing the metal–insulator transition with decreasing temperature or increasing magnetic field. This study points to a way in which electronic phase separation in manganites can be artificially controlled without changing chemical composition or applying external field.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26195791</pmid><doi>10.1073/pnas.1512326112</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-08, Vol.112 (31), p.9558-9562
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1702875056
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects antidot
Arrays
Correlation analysis
electronic phase separation
Electrons
Lattice theory
magnetization
manganites
MATERIALS SCIENCE
metal–insulator transition
Monte Carlo simulation
Physical Sciences
Symmetry
Thin films
title Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A16%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20electronic%20phase%20separation%20in%20strongly%20correlated%20oxides%20with%20an%20ordered%20array%20of%20antidots&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zhang,%20Kai&rft.aucorp=Louisiana%20State%20Univ.,%20Baton%20Rouge,%20LA%20(United%20States)&rft.date=2015-08-04&rft.volume=112&rft.issue=31&rft.spage=9558&rft.epage=9562&rft.pages=9558-9562&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1512326112&rft_dat=%3Cjstor_proqu%3E26464262%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1702875056&rft_id=info:pmid/26195791&rft_jstor_id=26464262&rfr_iscdi=true