On nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces

In the present paper we investigate the existence and uniqueness of solutions of nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces. The technique used in our analysis is based on fixed point theorems and Pachpatte's integral inequality.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied analysis 2014-12, Vol.20 (2), p.167-175
Hauptverfasser: Kendre, S. D., Kharat, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 2
container_start_page 167
container_title Journal of applied analysis
container_volume 20
creator Kendre, S. D.
Kharat, V. V.
description In the present paper we investigate the existence and uniqueness of solutions of nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces. The technique used in our analysis is based on fixed point theorems and Pachpatte's integral inequality.
doi_str_mv 10.1515/jaa-2014-0018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1702664804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3772880871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-b0c15b2c76e2e5600f086ab567b66d826e22f066e0c173a102e02b6b187203e3</originalsourceid><addsrcrecordid>eNptkL1PwzAQxS0EEqUwskdiNpydxHHFBBVfUqUu3S3HuVBXqd3aiUr_exzKwMB0p3e_d9J7hNwyuGclKx82WlMOrKAATJ6RCZNiRgVIfp72gpdUzEBekqsYNwCcC1FMSLN0mfOusw51yLb2C5usDdr01jvdZdb1-Bl8Y9sWA7reJg33gx7PMTvYfv3j9ibpxrvGjofkyp6102adxZ02GK_JRau7iDe_c0pWry-r-TtdLN8-5k8LanJW9bQGw8qam0ogx1IAtCCFrktR1UI0kieZtyAEJq7KNQOOwGtRM1lxyDGfkrvT213w-wFjrzZ-CClGVKyCMa-EIlH0RJngYwzYql2wWx2OioEae1SpRzX2qMYeE_944g-66zE0qY_hmJY_z__zceBMVPk3udt5_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702664804</pqid></control><display><type>article</type><title>On nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces</title><source>Alma/SFX Local Collection</source><creator>Kendre, S. D. ; Kharat, V. V.</creator><creatorcontrib>Kendre, S. D. ; Kharat, V. V.</creatorcontrib><description>In the present paper we investigate the existence and uniqueness of solutions of nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces. The technique used in our analysis is based on fixed point theorems and Pachpatte's integral inequality.</description><identifier>ISSN: 1425-6908</identifier><identifier>EISSN: 1869-6082</identifier><identifier>DOI: 10.1515/jaa-2014-0018</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>26A33 ; 34A40 ; 34K12 ; 35B60 ; 45G15 ; 45N05 ; Banach spaces ; Calculus ; Differential equations ; existence of solution ; Hypotheses ; Integral equations ; Investigations ; Mathematical analysis ; Mixed fractional integrodifferential equations ; nonlocal condition ; Studies</subject><ispartof>Journal of applied analysis, 2014-12, Vol.20 (2), p.167-175</ispartof><rights>Copyright Walter de Gruyter GmbH 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-b0c15b2c76e2e5600f086ab567b66d826e22f066e0c173a102e02b6b187203e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Kendre, S. D.</creatorcontrib><creatorcontrib>Kharat, V. V.</creatorcontrib><title>On nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces</title><title>Journal of applied analysis</title><description>In the present paper we investigate the existence and uniqueness of solutions of nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces. The technique used in our analysis is based on fixed point theorems and Pachpatte's integral inequality.</description><subject>26A33</subject><subject>34A40</subject><subject>34K12</subject><subject>35B60</subject><subject>45G15</subject><subject>45N05</subject><subject>Banach spaces</subject><subject>Calculus</subject><subject>Differential equations</subject><subject>existence of solution</subject><subject>Hypotheses</subject><subject>Integral equations</subject><subject>Investigations</subject><subject>Mathematical analysis</subject><subject>Mixed fractional integrodifferential equations</subject><subject>nonlocal condition</subject><subject>Studies</subject><issn>1425-6908</issn><issn>1869-6082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkL1PwzAQxS0EEqUwskdiNpydxHHFBBVfUqUu3S3HuVBXqd3aiUr_exzKwMB0p3e_d9J7hNwyuGclKx82WlMOrKAATJ6RCZNiRgVIfp72gpdUzEBekqsYNwCcC1FMSLN0mfOusw51yLb2C5usDdr01jvdZdb1-Bl8Y9sWA7reJg33gx7PMTvYfv3j9ibpxrvGjofkyp6102adxZ02GK_JRau7iDe_c0pWry-r-TtdLN8-5k8LanJW9bQGw8qam0ogx1IAtCCFrktR1UI0kieZtyAEJq7KNQOOwGtRM1lxyDGfkrvT213w-wFjrzZ-CClGVKyCMa-EIlH0RJngYwzYql2wWx2OioEae1SpRzX2qMYeE_944g-66zE0qY_hmJY_z__zceBMVPk3udt5_g</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Kendre, S. D.</creator><creator>Kharat, V. V.</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20141201</creationdate><title>On nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces</title><author>Kendre, S. D. ; Kharat, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-b0c15b2c76e2e5600f086ab567b66d826e22f066e0c173a102e02b6b187203e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>26A33</topic><topic>34A40</topic><topic>34K12</topic><topic>35B60</topic><topic>45G15</topic><topic>45N05</topic><topic>Banach spaces</topic><topic>Calculus</topic><topic>Differential equations</topic><topic>existence of solution</topic><topic>Hypotheses</topic><topic>Integral equations</topic><topic>Investigations</topic><topic>Mathematical analysis</topic><topic>Mixed fractional integrodifferential equations</topic><topic>nonlocal condition</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kendre, S. D.</creatorcontrib><creatorcontrib>Kharat, V. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kendre, S. D.</au><au>Kharat, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces</atitle><jtitle>Journal of applied analysis</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>20</volume><issue>2</issue><spage>167</spage><epage>175</epage><pages>167-175</pages><issn>1425-6908</issn><eissn>1869-6082</eissn><abstract>In the present paper we investigate the existence and uniqueness of solutions of nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces. The technique used in our analysis is based on fixed point theorems and Pachpatte's integral inequality.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/jaa-2014-0018</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1425-6908
ispartof Journal of applied analysis, 2014-12, Vol.20 (2), p.167-175
issn 1425-6908
1869-6082
language eng
recordid cdi_proquest_journals_1702664804
source Alma/SFX Local Collection
subjects 26A33
34A40
34K12
35B60
45G15
45N05
Banach spaces
Calculus
Differential equations
existence of solution
Hypotheses
Integral equations
Investigations
Mathematical analysis
Mixed fractional integrodifferential equations
nonlocal condition
Studies
title On nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20nonlinear%20mixed%20fractional%20integrodifferential%20equations%20with%20nonlocal%20condition%20in%20Banach%20spaces&rft.jtitle=Journal%20of%20applied%20analysis&rft.au=Kendre,%20S.%20D.&rft.date=2014-12-01&rft.volume=20&rft.issue=2&rft.spage=167&rft.epage=175&rft.pages=167-175&rft.issn=1425-6908&rft.eissn=1869-6082&rft_id=info:doi/10.1515/jaa-2014-0018&rft_dat=%3Cproquest_cross%3E3772880871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1702664804&rft_id=info:pmid/&rfr_iscdi=true