On nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces
In the present paper we investigate the existence and uniqueness of solutions of nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces. The technique used in our analysis is based on fixed point theorems and Pachpatte's integral inequality.
Gespeichert in:
Veröffentlicht in: | Journal of applied analysis 2014-12, Vol.20 (2), p.167-175 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175 |
---|---|
container_issue | 2 |
container_start_page | 167 |
container_title | Journal of applied analysis |
container_volume | 20 |
creator | Kendre, S. D. Kharat, V. V. |
description | In the present paper we investigate the existence and uniqueness
of solutions of nonlinear mixed fractional integrodifferential
equations with nonlocal condition in Banach spaces. The technique
used in our analysis is based on fixed point
theorems and Pachpatte's integral inequality. |
doi_str_mv | 10.1515/jaa-2014-0018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1702664804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3772880871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-b0c15b2c76e2e5600f086ab567b66d826e22f066e0c173a102e02b6b187203e3</originalsourceid><addsrcrecordid>eNptkL1PwzAQxS0EEqUwskdiNpydxHHFBBVfUqUu3S3HuVBXqd3aiUr_exzKwMB0p3e_d9J7hNwyuGclKx82WlMOrKAATJ6RCZNiRgVIfp72gpdUzEBekqsYNwCcC1FMSLN0mfOusw51yLb2C5usDdr01jvdZdb1-Bl8Y9sWA7reJg33gx7PMTvYfv3j9ibpxrvGjofkyp6102adxZ02GK_JRau7iDe_c0pWry-r-TtdLN8-5k8LanJW9bQGw8qam0ogx1IAtCCFrktR1UI0kieZtyAEJq7KNQOOwGtRM1lxyDGfkrvT213w-wFjrzZ-CClGVKyCMa-EIlH0RJngYwzYql2wWx2OioEae1SpRzX2qMYeE_944g-66zE0qY_hmJY_z__zceBMVPk3udt5_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702664804</pqid></control><display><type>article</type><title>On nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces</title><source>Alma/SFX Local Collection</source><creator>Kendre, S. D. ; Kharat, V. V.</creator><creatorcontrib>Kendre, S. D. ; Kharat, V. V.</creatorcontrib><description>In the present paper we investigate the existence and uniqueness
of solutions of nonlinear mixed fractional integrodifferential
equations with nonlocal condition in Banach spaces. The technique
used in our analysis is based on fixed point
theorems and Pachpatte's integral inequality.</description><identifier>ISSN: 1425-6908</identifier><identifier>EISSN: 1869-6082</identifier><identifier>DOI: 10.1515/jaa-2014-0018</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>26A33 ; 34A40 ; 34K12 ; 35B60 ; 45G15 ; 45N05 ; Banach spaces ; Calculus ; Differential equations ; existence of solution ; Hypotheses ; Integral equations ; Investigations ; Mathematical analysis ; Mixed fractional integrodifferential equations ; nonlocal condition ; Studies</subject><ispartof>Journal of applied analysis, 2014-12, Vol.20 (2), p.167-175</ispartof><rights>Copyright Walter de Gruyter GmbH 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-b0c15b2c76e2e5600f086ab567b66d826e22f066e0c173a102e02b6b187203e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Kendre, S. D.</creatorcontrib><creatorcontrib>Kharat, V. V.</creatorcontrib><title>On nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces</title><title>Journal of applied analysis</title><description>In the present paper we investigate the existence and uniqueness
of solutions of nonlinear mixed fractional integrodifferential
equations with nonlocal condition in Banach spaces. The technique
used in our analysis is based on fixed point
theorems and Pachpatte's integral inequality.</description><subject>26A33</subject><subject>34A40</subject><subject>34K12</subject><subject>35B60</subject><subject>45G15</subject><subject>45N05</subject><subject>Banach spaces</subject><subject>Calculus</subject><subject>Differential equations</subject><subject>existence of solution</subject><subject>Hypotheses</subject><subject>Integral equations</subject><subject>Investigations</subject><subject>Mathematical analysis</subject><subject>Mixed fractional integrodifferential equations</subject><subject>nonlocal condition</subject><subject>Studies</subject><issn>1425-6908</issn><issn>1869-6082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkL1PwzAQxS0EEqUwskdiNpydxHHFBBVfUqUu3S3HuVBXqd3aiUr_exzKwMB0p3e_d9J7hNwyuGclKx82WlMOrKAATJ6RCZNiRgVIfp72gpdUzEBekqsYNwCcC1FMSLN0mfOusw51yLb2C5usDdr01jvdZdb1-Bl8Y9sWA7reJg33gx7PMTvYfv3j9ibpxrvGjofkyp6102adxZ02GK_JRau7iDe_c0pWry-r-TtdLN8-5k8LanJW9bQGw8qam0ogx1IAtCCFrktR1UI0kieZtyAEJq7KNQOOwGtRM1lxyDGfkrvT213w-wFjrzZ-CClGVKyCMa-EIlH0RJngYwzYql2wWx2OioEae1SpRzX2qMYeE_944g-66zE0qY_hmJY_z__zceBMVPk3udt5_g</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Kendre, S. D.</creator><creator>Kharat, V. V.</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20141201</creationdate><title>On nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces</title><author>Kendre, S. D. ; Kharat, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-b0c15b2c76e2e5600f086ab567b66d826e22f066e0c173a102e02b6b187203e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>26A33</topic><topic>34A40</topic><topic>34K12</topic><topic>35B60</topic><topic>45G15</topic><topic>45N05</topic><topic>Banach spaces</topic><topic>Calculus</topic><topic>Differential equations</topic><topic>existence of solution</topic><topic>Hypotheses</topic><topic>Integral equations</topic><topic>Investigations</topic><topic>Mathematical analysis</topic><topic>Mixed fractional integrodifferential equations</topic><topic>nonlocal condition</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kendre, S. D.</creatorcontrib><creatorcontrib>Kharat, V. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kendre, S. D.</au><au>Kharat, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces</atitle><jtitle>Journal of applied analysis</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>20</volume><issue>2</issue><spage>167</spage><epage>175</epage><pages>167-175</pages><issn>1425-6908</issn><eissn>1869-6082</eissn><abstract>In the present paper we investigate the existence and uniqueness
of solutions of nonlinear mixed fractional integrodifferential
equations with nonlocal condition in Banach spaces. The technique
used in our analysis is based on fixed point
theorems and Pachpatte's integral inequality.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/jaa-2014-0018</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1425-6908 |
ispartof | Journal of applied analysis, 2014-12, Vol.20 (2), p.167-175 |
issn | 1425-6908 1869-6082 |
language | eng |
recordid | cdi_proquest_journals_1702664804 |
source | Alma/SFX Local Collection |
subjects | 26A33 34A40 34K12 35B60 45G15 45N05 Banach spaces Calculus Differential equations existence of solution Hypotheses Integral equations Investigations Mathematical analysis Mixed fractional integrodifferential equations nonlocal condition Studies |
title | On nonlinear mixed fractional integrodifferential equations with nonlocal condition in Banach spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20nonlinear%20mixed%20fractional%20integrodifferential%20equations%20with%20nonlocal%20condition%20in%20Banach%20spaces&rft.jtitle=Journal%20of%20applied%20analysis&rft.au=Kendre,%20S.%20D.&rft.date=2014-12-01&rft.volume=20&rft.issue=2&rft.spage=167&rft.epage=175&rft.pages=167-175&rft.issn=1425-6908&rft.eissn=1869-6082&rft_id=info:doi/10.1515/jaa-2014-0018&rft_dat=%3Cproquest_cross%3E3772880871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1702664804&rft_id=info:pmid/&rfr_iscdi=true |