Full complexity analysis of the diameter-constrained reliability

Let G=(V,E) be a simple graph with |V|=n nodes and |E|=m links, a subset K⊆V of “terminals,” a vector p=(p1,...,pm)∈[0,1]m, and a positive integer d, called “diameter.” We assume that nodes are perfect but links fail stochastically and independently, with probabilities qi=1−pi. The “diameter‐constra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International transactions in operational research 2015-09, Vol.22 (5), p.811-821
Hauptverfasser: Canale, Eduardo, Cancela, Héctor, Robledo, Franco, Romero, Pablo, Sartor, Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 821
container_issue 5
container_start_page 811
container_title International transactions in operational research
container_volume 22
creator Canale, Eduardo
Cancela, Héctor
Robledo, Franco
Romero, Pablo
Sartor, Pablo
description Let G=(V,E) be a simple graph with |V|=n nodes and |E|=m links, a subset K⊆V of “terminals,” a vector p=(p1,...,pm)∈[0,1]m, and a positive integer d, called “diameter.” We assume that nodes are perfect but links fail stochastically and independently, with probabilities qi=1−pi. The “diameter‐constrained reliability” (DCR) is the probability that the terminals of the resulting subgraph remain connected by paths composed of d links, or less. This number is denoted by RK,Gd(p). The general DCR computation belongs to the class of NP‐hard problems, since it subsumes the problem of computing the probability that a random graph is connected. The contributions of this paper are twofold. First, a full analysis of the computational complexity of DCR subproblems is presented in terms of the number of terminal nodes k=|K| and the diameter d. Second, we extend the class of graphs that accept efficient DCR computation. In this class, we include graphs with bounded co‐rank, graphs with bounded genus, planar graphs, and, in particular, Monma graphs, which are relevant to robust network design.
doi_str_mv 10.1111/itor.12159
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1700836643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3766772411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3709-4decc442f2d277b17bd519254f0542999859b3b972e39c91474d19403ef6f3943</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFY3_oKAOyF1JvPq3al9Y7EgFd0Nk2SCU6dNnUmx-femRl16N3fzfYfDQeiS4B5p7sZWpe-RhHA4Qh3CJI8pAD9GHQwCYoGJOEVnIawwxoQT2UG3451zUVaut87sbVVHeqNdHWyIyiKq3kyUW702lfFxVm5C5bXdmDzyxlmdWtcI5-ik0C6Yi5_fRc_j0XIwjeeLyWxwN48zKjHELDdZxlhSJHkiZUpkmnMCCWcF5iwBgD6HlKYgE0Mhg6Y6ywkwTE0hCgqMdtFVm7v15cfOhEqtyp1vygZFJMZ9KgSjDXXdUpkvQ_CmUFtv19rXimB1WEgdFlLfCzUwaeFP60z9D6lmy8XTrxO3jg2V2f852r8rIank6uVxoub3w4fJVAzVK_0CdeJ3FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700836643</pqid></control><display><type>article</type><title>Full complexity analysis of the diameter-constrained reliability</title><source>Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Canale, Eduardo ; Cancela, Héctor ; Robledo, Franco ; Romero, Pablo ; Sartor, Pablo</creator><creatorcontrib>Canale, Eduardo ; Cancela, Héctor ; Robledo, Franco ; Romero, Pablo ; Sartor, Pablo</creatorcontrib><description>Let G=(V,E) be a simple graph with |V|=n nodes and |E|=m links, a subset K⊆V of “terminals,” a vector p=(p1,...,pm)∈[0,1]m, and a positive integer d, called “diameter.” We assume that nodes are perfect but links fail stochastically and independently, with probabilities qi=1−pi. The “diameter‐constrained reliability” (DCR) is the probability that the terminals of the resulting subgraph remain connected by paths composed of d links, or less. This number is denoted by RK,Gd(p). The general DCR computation belongs to the class of NP‐hard problems, since it subsumes the problem of computing the probability that a random graph is connected. The contributions of this paper are twofold. First, a full analysis of the computational complexity of DCR subproblems is presented in terms of the number of terminal nodes k=|K| and the diameter d. Second, we extend the class of graphs that accept efficient DCR computation. In this class, we include graphs with bounded co‐rank, graphs with bounded genus, planar graphs, and, in particular, Monma graphs, which are relevant to robust network design.</description><identifier>ISSN: 0969-6016</identifier><identifier>EISSN: 1475-3995</identifier><identifier>DOI: 10.1111/itor.12159</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>computational complexity ; diameter-constrained reliability ; Graphs ; Monma graphs ; network reliability ; Operations research ; Studies</subject><ispartof>International transactions in operational research, 2015-09, Vol.22 (5), p.811-821</ispartof><rights>2015 The Authors. International Transactions in Operational Research © 2015 International Federation of Operational Research Societies Published by John Wiley &amp; Sons Ltd, 9600 Garsington Road, Oxford, OX4 2DQ, UK and 350 Main St, Malden, MA02148, USA.</rights><rights>2015 The Authors.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3709-4decc442f2d277b17bd519254f0542999859b3b972e39c91474d19403ef6f3943</citedby><cites>FETCH-LOGICAL-c3709-4decc442f2d277b17bd519254f0542999859b3b972e39c91474d19403ef6f3943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fitor.12159$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fitor.12159$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Canale, Eduardo</creatorcontrib><creatorcontrib>Cancela, Héctor</creatorcontrib><creatorcontrib>Robledo, Franco</creatorcontrib><creatorcontrib>Romero, Pablo</creatorcontrib><creatorcontrib>Sartor, Pablo</creatorcontrib><title>Full complexity analysis of the diameter-constrained reliability</title><title>International transactions in operational research</title><addtitle>Intl. Trans. in Op. Res</addtitle><description>Let G=(V,E) be a simple graph with |V|=n nodes and |E|=m links, a subset K⊆V of “terminals,” a vector p=(p1,...,pm)∈[0,1]m, and a positive integer d, called “diameter.” We assume that nodes are perfect but links fail stochastically and independently, with probabilities qi=1−pi. The “diameter‐constrained reliability” (DCR) is the probability that the terminals of the resulting subgraph remain connected by paths composed of d links, or less. This number is denoted by RK,Gd(p). The general DCR computation belongs to the class of NP‐hard problems, since it subsumes the problem of computing the probability that a random graph is connected. The contributions of this paper are twofold. First, a full analysis of the computational complexity of DCR subproblems is presented in terms of the number of terminal nodes k=|K| and the diameter d. Second, we extend the class of graphs that accept efficient DCR computation. In this class, we include graphs with bounded co‐rank, graphs with bounded genus, planar graphs, and, in particular, Monma graphs, which are relevant to robust network design.</description><subject>computational complexity</subject><subject>diameter-constrained reliability</subject><subject>Graphs</subject><subject>Monma graphs</subject><subject>network reliability</subject><subject>Operations research</subject><subject>Studies</subject><issn>0969-6016</issn><issn>1475-3995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFY3_oKAOyF1JvPq3al9Y7EgFd0Nk2SCU6dNnUmx-femRl16N3fzfYfDQeiS4B5p7sZWpe-RhHA4Qh3CJI8pAD9GHQwCYoGJOEVnIawwxoQT2UG3451zUVaut87sbVVHeqNdHWyIyiKq3kyUW702lfFxVm5C5bXdmDzyxlmdWtcI5-ik0C6Yi5_fRc_j0XIwjeeLyWxwN48zKjHELDdZxlhSJHkiZUpkmnMCCWcF5iwBgD6HlKYgE0Mhg6Y6ywkwTE0hCgqMdtFVm7v15cfOhEqtyp1vygZFJMZ9KgSjDXXdUpkvQ_CmUFtv19rXimB1WEgdFlLfCzUwaeFP60z9D6lmy8XTrxO3jg2V2f852r8rIank6uVxoub3w4fJVAzVK_0CdeJ3FQ</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Canale, Eduardo</creator><creator>Cancela, Héctor</creator><creator>Robledo, Franco</creator><creator>Romero, Pablo</creator><creator>Sartor, Pablo</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201509</creationdate><title>Full complexity analysis of the diameter-constrained reliability</title><author>Canale, Eduardo ; Cancela, Héctor ; Robledo, Franco ; Romero, Pablo ; Sartor, Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3709-4decc442f2d277b17bd519254f0542999859b3b972e39c91474d19403ef6f3943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>computational complexity</topic><topic>diameter-constrained reliability</topic><topic>Graphs</topic><topic>Monma graphs</topic><topic>network reliability</topic><topic>Operations research</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canale, Eduardo</creatorcontrib><creatorcontrib>Cancela, Héctor</creatorcontrib><creatorcontrib>Robledo, Franco</creatorcontrib><creatorcontrib>Romero, Pablo</creatorcontrib><creatorcontrib>Sartor, Pablo</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International transactions in operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canale, Eduardo</au><au>Cancela, Héctor</au><au>Robledo, Franco</au><au>Romero, Pablo</au><au>Sartor, Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full complexity analysis of the diameter-constrained reliability</atitle><jtitle>International transactions in operational research</jtitle><addtitle>Intl. Trans. in Op. Res</addtitle><date>2015-09</date><risdate>2015</risdate><volume>22</volume><issue>5</issue><spage>811</spage><epage>821</epage><pages>811-821</pages><issn>0969-6016</issn><eissn>1475-3995</eissn><abstract>Let G=(V,E) be a simple graph with |V|=n nodes and |E|=m links, a subset K⊆V of “terminals,” a vector p=(p1,...,pm)∈[0,1]m, and a positive integer d, called “diameter.” We assume that nodes are perfect but links fail stochastically and independently, with probabilities qi=1−pi. The “diameter‐constrained reliability” (DCR) is the probability that the terminals of the resulting subgraph remain connected by paths composed of d links, or less. This number is denoted by RK,Gd(p). The general DCR computation belongs to the class of NP‐hard problems, since it subsumes the problem of computing the probability that a random graph is connected. The contributions of this paper are twofold. First, a full analysis of the computational complexity of DCR subproblems is presented in terms of the number of terminal nodes k=|K| and the diameter d. Second, we extend the class of graphs that accept efficient DCR computation. In this class, we include graphs with bounded co‐rank, graphs with bounded genus, planar graphs, and, in particular, Monma graphs, which are relevant to robust network design.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/itor.12159</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0969-6016
ispartof International transactions in operational research, 2015-09, Vol.22 (5), p.811-821
issn 0969-6016
1475-3995
language eng
recordid cdi_proquest_journals_1700836643
source Business Source Complete; Wiley Online Library All Journals
subjects computational complexity
diameter-constrained reliability
Graphs
Monma graphs
network reliability
Operations research
Studies
title Full complexity analysis of the diameter-constrained reliability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full%20complexity%20analysis%20of%20the%20diameter-constrained%20reliability&rft.jtitle=International%20transactions%20in%20operational%20research&rft.au=Canale,%20Eduardo&rft.date=2015-09&rft.volume=22&rft.issue=5&rft.spage=811&rft.epage=821&rft.pages=811-821&rft.issn=0969-6016&rft.eissn=1475-3995&rft_id=info:doi/10.1111/itor.12159&rft_dat=%3Cproquest_cross%3E3766772411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700836643&rft_id=info:pmid/&rfr_iscdi=true