Three-Dimensional NiMoO4 Nanosheets Supported on a Carbon Fibers@Pre-Treated Ni Foam (CF@PNF) Substrate as Advanced Electrodes for Asymmetric Supercapacitors

Herein, we report a nanoarchitectured nickel molybdate/carbon fibers@pre‐treated Ni foam (NiMoO4/CF@PNF) electrode for supercapacitors. The synthesis of NiMoO4/CF@PNF mainly consists of a direct chemical vapor deposition (CVD) growth of dense carbon fibers (CFs) onto pre‐treated Ni foam (PNF) as the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry, an Asian journal an Asian journal, 2015-08, Vol.10 (8), p.1745-1752
Hauptverfasser: Zhou, Caixia, Yang, Wen, Zeng, Guangfeng, Lei, Ying, Gu, Li, Xi, Xianghui, Xiao, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, we report a nanoarchitectured nickel molybdate/carbon fibers@pre‐treated Ni foam (NiMoO4/CF@PNF) electrode for supercapacitors. The synthesis of NiMoO4/CF@PNF mainly consists of a direct chemical vapor deposition (CVD) growth of dense carbon fibers (CFs) onto pre‐treated Ni foam (PNF) as the substrate, followed by in situ growth of NiMoO4 nanosheets (NSs) on the CF@PNF substrate by means of a hydrothermal process. The NiMoO4/CF@PNF electrode exhibits a high areal capacitance (5.14 F cm−2 at 4 mA cm−2) and excellent cycling stability (97 % capacitance retention after 2000 cycles at 10 mA cm−2). Furthermore, we have successfully assembled NiMoO4 NSs//activated carbon (AC) asymmetric supercapacitors, which can achieve an energy density of 45.6 Wh kg−1 at 674 W kg−1, and excellent stability with 93 % capacitance retention after 2000 cycles at 5 mA cm−2. These superior properties hold great promise for energy‐storage applications. Fibers and foam: The synthesis and analysis of a nanoarchitectured nickel molybdate/carbon fibers@pre‐treated Ni foam (NiMoO4/CF@PNF) electrode is reported (see figure). The electrode exhibits a high areal capacitance and excellent cycling stability. These superior properties hold great promise for energy‐storage applications.
ISSN:1861-4728
1861-471X
DOI:10.1002/asia.201500371