Multiclass Support Vector Machines for Classification of ECG Data with Missing Values

The article presents an experimental study on multiclass Support Vector Machine (SVM) methods over a cardiac arrhythmia dataset that has missing attribute values for electrocardiogram (ECG) diagnostic application. The presence of an incomplete dataset and high data dimensionality can affect the perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied artificial intelligence 2015-08, Vol.29 (7), p.660-674
Hauptverfasser: Hejazi, Maryamsadat, Al-Haddad, S. A. R., Singh, Yashwant Prasad, Hashim, Shaiful Jahari, Aziz, Ahmad Fazli Abdul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 674
container_issue 7
container_start_page 660
container_title Applied artificial intelligence
container_volume 29
creator Hejazi, Maryamsadat
Al-Haddad, S. A. R.
Singh, Yashwant Prasad
Hashim, Shaiful Jahari
Aziz, Ahmad Fazli Abdul
description The article presents an experimental study on multiclass Support Vector Machine (SVM) methods over a cardiac arrhythmia dataset that has missing attribute values for electrocardiogram (ECG) diagnostic application. The presence of an incomplete dataset and high data dimensionality can affect the performance of classifiers. Imputation of missing data and discriminant analysis are commonly used as preprocessing techniques in such large datasets. The article proposes experiments to evaluate performance of One-Against-All (OAA) and One-Against-One (OAO) approaches in kernel multiclass SVM for a heartbeat classification problem with imputation and dimension reduction techniques. The results indicate that the OAA approach has superiority over OAO in multiclass SVM for ECG data analysis with missing values.
doi_str_mv 10.1080/08839514.2015.1051887
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1700147183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3763400811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-3dc8d8b245cffbc297fd088f91488a27ba0d0e5bca2e9ca5eec29bae292cdb0d3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqXwE5AssbCk2ElMnA1USkFqxQDtal0cm7pK42A7qvrvcVRYGJhOd_fuQw-ha0omlHByRzjPSkbzSUooiyVGOS9O0Cg2i-Se5ewUjQYmGaBzdOH9lhBCi4KO0GrZN8HIBrzH733XWRfwWslgHV6C3JhWeaxjMh0Io42EYGyLrcaz6Rw_QQC8N2GDlya220-8hqZX_hKdaWi8uvqJY7R6nn1MX5LF2_x1-rhIZE55SLJa8ppXac6k1pVMy0LX8VFd0pxzSIsKSE0UqySkqpTAlIpMBSotU1lXpM7G6Pa4t3P2K94NYme8VE0DrbK9F7SgvCxoXvKI3vxBt7Z3bfwuUtFGHtEsUuxISWe9d0qLzpkduIOgRAyyxa9sMcgWP7Lj3MNxzrTR1g721jW1CHBorNMOWmm8yP5f8Q2PBIaK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700147183</pqid></control><display><type>article</type><title>Multiclass Support Vector Machines for Classification of ECG Data with Missing Values</title><source>EBSCOhost Business Source Complete</source><creator>Hejazi, Maryamsadat ; Al-Haddad, S. A. R. ; Singh, Yashwant Prasad ; Hashim, Shaiful Jahari ; Aziz, Ahmad Fazli Abdul</creator><creatorcontrib>Hejazi, Maryamsadat ; Al-Haddad, S. A. R. ; Singh, Yashwant Prasad ; Hashim, Shaiful Jahari ; Aziz, Ahmad Fazli Abdul</creatorcontrib><description>The article presents an experimental study on multiclass Support Vector Machine (SVM) methods over a cardiac arrhythmia dataset that has missing attribute values for electrocardiogram (ECG) diagnostic application. The presence of an incomplete dataset and high data dimensionality can affect the performance of classifiers. Imputation of missing data and discriminant analysis are commonly used as preprocessing techniques in such large datasets. The article proposes experiments to evaluate performance of One-Against-All (OAA) and One-Against-One (OAO) approaches in kernel multiclass SVM for a heartbeat classification problem with imputation and dimension reduction techniques. The results indicate that the OAA approach has superiority over OAO in multiclass SVM for ECG data analysis with missing values.</description><identifier>ISSN: 0883-9514</identifier><identifier>EISSN: 1087-6545</identifier><identifier>DOI: 10.1080/08839514.2015.1051887</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Artificial intelligence ; Cardiac arrhythmia ; Classification ; Data analysis ; Data processing ; Discriminant analysis ; Electrocardiography ; Expert systems ; OAO ; Performance evaluation ; Preprocessing ; Support vector machines</subject><ispartof>Applied artificial intelligence, 2015-08, Vol.29 (7), p.660-674</ispartof><rights>Copyright © 2015 Taylor &amp; Francis Group, LLC 2015</rights><rights>Copyright Taylor &amp; Francis Ltd. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-3dc8d8b245cffbc297fd088f91488a27ba0d0e5bca2e9ca5eec29bae292cdb0d3</citedby><cites>FETCH-LOGICAL-c418t-3dc8d8b245cffbc297fd088f91488a27ba0d0e5bca2e9ca5eec29bae292cdb0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hejazi, Maryamsadat</creatorcontrib><creatorcontrib>Al-Haddad, S. A. R.</creatorcontrib><creatorcontrib>Singh, Yashwant Prasad</creatorcontrib><creatorcontrib>Hashim, Shaiful Jahari</creatorcontrib><creatorcontrib>Aziz, Ahmad Fazli Abdul</creatorcontrib><title>Multiclass Support Vector Machines for Classification of ECG Data with Missing Values</title><title>Applied artificial intelligence</title><description>The article presents an experimental study on multiclass Support Vector Machine (SVM) methods over a cardiac arrhythmia dataset that has missing attribute values for electrocardiogram (ECG) diagnostic application. The presence of an incomplete dataset and high data dimensionality can affect the performance of classifiers. Imputation of missing data and discriminant analysis are commonly used as preprocessing techniques in such large datasets. The article proposes experiments to evaluate performance of One-Against-All (OAA) and One-Against-One (OAO) approaches in kernel multiclass SVM for a heartbeat classification problem with imputation and dimension reduction techniques. The results indicate that the OAA approach has superiority over OAO in multiclass SVM for ECG data analysis with missing values.</description><subject>Artificial intelligence</subject><subject>Cardiac arrhythmia</subject><subject>Classification</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Discriminant analysis</subject><subject>Electrocardiography</subject><subject>Expert systems</subject><subject>OAO</subject><subject>Performance evaluation</subject><subject>Preprocessing</subject><subject>Support vector machines</subject><issn>0883-9514</issn><issn>1087-6545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqXwE5AssbCk2ElMnA1USkFqxQDtal0cm7pK42A7qvrvcVRYGJhOd_fuQw-ha0omlHByRzjPSkbzSUooiyVGOS9O0Cg2i-Se5ewUjQYmGaBzdOH9lhBCi4KO0GrZN8HIBrzH733XWRfwWslgHV6C3JhWeaxjMh0Io42EYGyLrcaz6Rw_QQC8N2GDlya220-8hqZX_hKdaWi8uvqJY7R6nn1MX5LF2_x1-rhIZE55SLJa8ppXac6k1pVMy0LX8VFd0pxzSIsKSE0UqySkqpTAlIpMBSotU1lXpM7G6Pa4t3P2K94NYme8VE0DrbK9F7SgvCxoXvKI3vxBt7Z3bfwuUtFGHtEsUuxISWe9d0qLzpkduIOgRAyyxa9sMcgWP7Lj3MNxzrTR1g721jW1CHBorNMOWmm8yP5f8Q2PBIaK</recordid><startdate>20150809</startdate><enddate>20150809</enddate><creator>Hejazi, Maryamsadat</creator><creator>Al-Haddad, S. A. R.</creator><creator>Singh, Yashwant Prasad</creator><creator>Hashim, Shaiful Jahari</creator><creator>Aziz, Ahmad Fazli Abdul</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20150809</creationdate><title>Multiclass Support Vector Machines for Classification of ECG Data with Missing Values</title><author>Hejazi, Maryamsadat ; Al-Haddad, S. A. R. ; Singh, Yashwant Prasad ; Hashim, Shaiful Jahari ; Aziz, Ahmad Fazli Abdul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-3dc8d8b245cffbc297fd088f91488a27ba0d0e5bca2e9ca5eec29bae292cdb0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial intelligence</topic><topic>Cardiac arrhythmia</topic><topic>Classification</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Discriminant analysis</topic><topic>Electrocardiography</topic><topic>Expert systems</topic><topic>OAO</topic><topic>Performance evaluation</topic><topic>Preprocessing</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hejazi, Maryamsadat</creatorcontrib><creatorcontrib>Al-Haddad, S. A. R.</creatorcontrib><creatorcontrib>Singh, Yashwant Prasad</creatorcontrib><creatorcontrib>Hashim, Shaiful Jahari</creatorcontrib><creatorcontrib>Aziz, Ahmad Fazli Abdul</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Applied artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hejazi, Maryamsadat</au><au>Al-Haddad, S. A. R.</au><au>Singh, Yashwant Prasad</au><au>Hashim, Shaiful Jahari</au><au>Aziz, Ahmad Fazli Abdul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiclass Support Vector Machines for Classification of ECG Data with Missing Values</atitle><jtitle>Applied artificial intelligence</jtitle><date>2015-08-09</date><risdate>2015</risdate><volume>29</volume><issue>7</issue><spage>660</spage><epage>674</epage><pages>660-674</pages><issn>0883-9514</issn><eissn>1087-6545</eissn><abstract>The article presents an experimental study on multiclass Support Vector Machine (SVM) methods over a cardiac arrhythmia dataset that has missing attribute values for electrocardiogram (ECG) diagnostic application. The presence of an incomplete dataset and high data dimensionality can affect the performance of classifiers. Imputation of missing data and discriminant analysis are commonly used as preprocessing techniques in such large datasets. The article proposes experiments to evaluate performance of One-Against-All (OAA) and One-Against-One (OAO) approaches in kernel multiclass SVM for a heartbeat classification problem with imputation and dimension reduction techniques. The results indicate that the OAA approach has superiority over OAO in multiclass SVM for ECG data analysis with missing values.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/08839514.2015.1051887</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-9514
ispartof Applied artificial intelligence, 2015-08, Vol.29 (7), p.660-674
issn 0883-9514
1087-6545
language eng
recordid cdi_proquest_journals_1700147183
source EBSCOhost Business Source Complete
subjects Artificial intelligence
Cardiac arrhythmia
Classification
Data analysis
Data processing
Discriminant analysis
Electrocardiography
Expert systems
OAO
Performance evaluation
Preprocessing
Support vector machines
title Multiclass Support Vector Machines for Classification of ECG Data with Missing Values
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiclass%20Support%20Vector%20Machines%20for%20Classification%20of%20ECG%20Data%20with%20Missing%20Values&rft.jtitle=Applied%20artificial%20intelligence&rft.au=Hejazi,%20Maryamsadat&rft.date=2015-08-09&rft.volume=29&rft.issue=7&rft.spage=660&rft.epage=674&rft.pages=660-674&rft.issn=0883-9514&rft.eissn=1087-6545&rft_id=info:doi/10.1080/08839514.2015.1051887&rft_dat=%3Cproquest_infor%3E3763400811%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700147183&rft_id=info:pmid/&rfr_iscdi=true