Multiclass Support Vector Machines for Classification of ECG Data with Missing Values
The article presents an experimental study on multiclass Support Vector Machine (SVM) methods over a cardiac arrhythmia dataset that has missing attribute values for electrocardiogram (ECG) diagnostic application. The presence of an incomplete dataset and high data dimensionality can affect the perf...
Gespeichert in:
Veröffentlicht in: | Applied artificial intelligence 2015-08, Vol.29 (7), p.660-674 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 674 |
---|---|
container_issue | 7 |
container_start_page | 660 |
container_title | Applied artificial intelligence |
container_volume | 29 |
creator | Hejazi, Maryamsadat Al-Haddad, S. A. R. Singh, Yashwant Prasad Hashim, Shaiful Jahari Aziz, Ahmad Fazli Abdul |
description | The article presents an experimental study on multiclass Support Vector Machine (SVM) methods over a cardiac arrhythmia dataset that has missing attribute values for electrocardiogram (ECG) diagnostic application. The presence of an incomplete dataset and high data dimensionality can affect the performance of classifiers. Imputation of missing data and discriminant analysis are commonly used as preprocessing techniques in such large datasets. The article proposes experiments to evaluate performance of One-Against-All (OAA) and One-Against-One (OAO) approaches in kernel multiclass SVM for a heartbeat classification problem with imputation and dimension reduction techniques. The results indicate that the OAA approach has superiority over OAO in multiclass SVM for ECG data analysis with missing values. |
doi_str_mv | 10.1080/08839514.2015.1051887 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1700147183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3763400811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-3dc8d8b245cffbc297fd088f91488a27ba0d0e5bca2e9ca5eec29bae292cdb0d3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqXwE5AssbCk2ElMnA1USkFqxQDtal0cm7pK42A7qvrvcVRYGJhOd_fuQw-ha0omlHByRzjPSkbzSUooiyVGOS9O0Cg2i-Se5ewUjQYmGaBzdOH9lhBCi4KO0GrZN8HIBrzH733XWRfwWslgHV6C3JhWeaxjMh0Io42EYGyLrcaz6Rw_QQC8N2GDlya220-8hqZX_hKdaWi8uvqJY7R6nn1MX5LF2_x1-rhIZE55SLJa8ppXac6k1pVMy0LX8VFd0pxzSIsKSE0UqySkqpTAlIpMBSotU1lXpM7G6Pa4t3P2K94NYme8VE0DrbK9F7SgvCxoXvKI3vxBt7Z3bfwuUtFGHtEsUuxISWe9d0qLzpkduIOgRAyyxa9sMcgWP7Lj3MNxzrTR1g721jW1CHBorNMOWmm8yP5f8Q2PBIaK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700147183</pqid></control><display><type>article</type><title>Multiclass Support Vector Machines for Classification of ECG Data with Missing Values</title><source>EBSCOhost Business Source Complete</source><creator>Hejazi, Maryamsadat ; Al-Haddad, S. A. R. ; Singh, Yashwant Prasad ; Hashim, Shaiful Jahari ; Aziz, Ahmad Fazli Abdul</creator><creatorcontrib>Hejazi, Maryamsadat ; Al-Haddad, S. A. R. ; Singh, Yashwant Prasad ; Hashim, Shaiful Jahari ; Aziz, Ahmad Fazli Abdul</creatorcontrib><description>The article presents an experimental study on multiclass Support Vector Machine (SVM) methods over a cardiac arrhythmia dataset that has missing attribute values for electrocardiogram (ECG) diagnostic application. The presence of an incomplete dataset and high data dimensionality can affect the performance of classifiers. Imputation of missing data and discriminant analysis are commonly used as preprocessing techniques in such large datasets. The article proposes experiments to evaluate performance of One-Against-All (OAA) and One-Against-One (OAO) approaches in kernel multiclass SVM for a heartbeat classification problem with imputation and dimension reduction techniques. The results indicate that the OAA approach has superiority over OAO in multiclass SVM for ECG data analysis with missing values.</description><identifier>ISSN: 0883-9514</identifier><identifier>EISSN: 1087-6545</identifier><identifier>DOI: 10.1080/08839514.2015.1051887</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Artificial intelligence ; Cardiac arrhythmia ; Classification ; Data analysis ; Data processing ; Discriminant analysis ; Electrocardiography ; Expert systems ; OAO ; Performance evaluation ; Preprocessing ; Support vector machines</subject><ispartof>Applied artificial intelligence, 2015-08, Vol.29 (7), p.660-674</ispartof><rights>Copyright © 2015 Taylor & Francis Group, LLC 2015</rights><rights>Copyright Taylor & Francis Ltd. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-3dc8d8b245cffbc297fd088f91488a27ba0d0e5bca2e9ca5eec29bae292cdb0d3</citedby><cites>FETCH-LOGICAL-c418t-3dc8d8b245cffbc297fd088f91488a27ba0d0e5bca2e9ca5eec29bae292cdb0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hejazi, Maryamsadat</creatorcontrib><creatorcontrib>Al-Haddad, S. A. R.</creatorcontrib><creatorcontrib>Singh, Yashwant Prasad</creatorcontrib><creatorcontrib>Hashim, Shaiful Jahari</creatorcontrib><creatorcontrib>Aziz, Ahmad Fazli Abdul</creatorcontrib><title>Multiclass Support Vector Machines for Classification of ECG Data with Missing Values</title><title>Applied artificial intelligence</title><description>The article presents an experimental study on multiclass Support Vector Machine (SVM) methods over a cardiac arrhythmia dataset that has missing attribute values for electrocardiogram (ECG) diagnostic application. The presence of an incomplete dataset and high data dimensionality can affect the performance of classifiers. Imputation of missing data and discriminant analysis are commonly used as preprocessing techniques in such large datasets. The article proposes experiments to evaluate performance of One-Against-All (OAA) and One-Against-One (OAO) approaches in kernel multiclass SVM for a heartbeat classification problem with imputation and dimension reduction techniques. The results indicate that the OAA approach has superiority over OAO in multiclass SVM for ECG data analysis with missing values.</description><subject>Artificial intelligence</subject><subject>Cardiac arrhythmia</subject><subject>Classification</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Discriminant analysis</subject><subject>Electrocardiography</subject><subject>Expert systems</subject><subject>OAO</subject><subject>Performance evaluation</subject><subject>Preprocessing</subject><subject>Support vector machines</subject><issn>0883-9514</issn><issn>1087-6545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqXwE5AssbCk2ElMnA1USkFqxQDtal0cm7pK42A7qvrvcVRYGJhOd_fuQw-ha0omlHByRzjPSkbzSUooiyVGOS9O0Cg2i-Se5ewUjQYmGaBzdOH9lhBCi4KO0GrZN8HIBrzH733XWRfwWslgHV6C3JhWeaxjMh0Io42EYGyLrcaz6Rw_QQC8N2GDlya220-8hqZX_hKdaWi8uvqJY7R6nn1MX5LF2_x1-rhIZE55SLJa8ppXac6k1pVMy0LX8VFd0pxzSIsKSE0UqySkqpTAlIpMBSotU1lXpM7G6Pa4t3P2K94NYme8VE0DrbK9F7SgvCxoXvKI3vxBt7Z3bfwuUtFGHtEsUuxISWe9d0qLzpkduIOgRAyyxa9sMcgWP7Lj3MNxzrTR1g721jW1CHBorNMOWmm8yP5f8Q2PBIaK</recordid><startdate>20150809</startdate><enddate>20150809</enddate><creator>Hejazi, Maryamsadat</creator><creator>Al-Haddad, S. A. R.</creator><creator>Singh, Yashwant Prasad</creator><creator>Hashim, Shaiful Jahari</creator><creator>Aziz, Ahmad Fazli Abdul</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20150809</creationdate><title>Multiclass Support Vector Machines for Classification of ECG Data with Missing Values</title><author>Hejazi, Maryamsadat ; Al-Haddad, S. A. R. ; Singh, Yashwant Prasad ; Hashim, Shaiful Jahari ; Aziz, Ahmad Fazli Abdul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-3dc8d8b245cffbc297fd088f91488a27ba0d0e5bca2e9ca5eec29bae292cdb0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial intelligence</topic><topic>Cardiac arrhythmia</topic><topic>Classification</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Discriminant analysis</topic><topic>Electrocardiography</topic><topic>Expert systems</topic><topic>OAO</topic><topic>Performance evaluation</topic><topic>Preprocessing</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hejazi, Maryamsadat</creatorcontrib><creatorcontrib>Al-Haddad, S. A. R.</creatorcontrib><creatorcontrib>Singh, Yashwant Prasad</creatorcontrib><creatorcontrib>Hashim, Shaiful Jahari</creatorcontrib><creatorcontrib>Aziz, Ahmad Fazli Abdul</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Applied artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hejazi, Maryamsadat</au><au>Al-Haddad, S. A. R.</au><au>Singh, Yashwant Prasad</au><au>Hashim, Shaiful Jahari</au><au>Aziz, Ahmad Fazli Abdul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiclass Support Vector Machines for Classification of ECG Data with Missing Values</atitle><jtitle>Applied artificial intelligence</jtitle><date>2015-08-09</date><risdate>2015</risdate><volume>29</volume><issue>7</issue><spage>660</spage><epage>674</epage><pages>660-674</pages><issn>0883-9514</issn><eissn>1087-6545</eissn><abstract>The article presents an experimental study on multiclass Support Vector Machine (SVM) methods over a cardiac arrhythmia dataset that has missing attribute values for electrocardiogram (ECG) diagnostic application. The presence of an incomplete dataset and high data dimensionality can affect the performance of classifiers. Imputation of missing data and discriminant analysis are commonly used as preprocessing techniques in such large datasets. The article proposes experiments to evaluate performance of One-Against-All (OAA) and One-Against-One (OAO) approaches in kernel multiclass SVM for a heartbeat classification problem with imputation and dimension reduction techniques. The results indicate that the OAA approach has superiority over OAO in multiclass SVM for ECG data analysis with missing values.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/08839514.2015.1051887</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-9514 |
ispartof | Applied artificial intelligence, 2015-08, Vol.29 (7), p.660-674 |
issn | 0883-9514 1087-6545 |
language | eng |
recordid | cdi_proquest_journals_1700147183 |
source | EBSCOhost Business Source Complete |
subjects | Artificial intelligence Cardiac arrhythmia Classification Data analysis Data processing Discriminant analysis Electrocardiography Expert systems OAO Performance evaluation Preprocessing Support vector machines |
title | Multiclass Support Vector Machines for Classification of ECG Data with Missing Values |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiclass%20Support%20Vector%20Machines%20for%20Classification%20of%20ECG%20Data%20with%20Missing%20Values&rft.jtitle=Applied%20artificial%20intelligence&rft.au=Hejazi,%20Maryamsadat&rft.date=2015-08-09&rft.volume=29&rft.issue=7&rft.spage=660&rft.epage=674&rft.pages=660-674&rft.issn=0883-9514&rft.eissn=1087-6545&rft_id=info:doi/10.1080/08839514.2015.1051887&rft_dat=%3Cproquest_infor%3E3763400811%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700147183&rft_id=info:pmid/&rfr_iscdi=true |