A Semiautomated Probabilistic Framework for Tree-Cover Delineation From 1-m NAIP Imagery Using a High-Performance Computing Architecture
Accurate tree-cover estimates are useful in deriving above-ground biomass density estimates from very high resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree-cover delineation in high-to-coarse-resolution satellite imagery, but most of them do not scale t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2015-10, Vol.53 (10), p.5690-5708 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5708 |
---|---|
container_issue | 10 |
container_start_page | 5690 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 53 |
creator | Basu, Saikat Ganguly, Sangram Nemani, Ramakrishna R. Mukhopadhyay, Supratik Gong Zhang Milesi, Cristina Michaelis, Andrew Votava, Petr Dubayah, Ralph Duncanson, Laura Cook, Bruce Yifan Yu Saatchi, Sassan DiBiano, Robert Karki, Manohar Boyda, Edward Kumar, Uttam Shuang Li |
description | Accurate tree-cover estimates are useful in deriving above-ground biomass density estimates from very high resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree-cover delineation in high-to-coarse-resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR data sets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree-cover estimates for the whole of Continental United States, using a high-performance computing architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on conditional random field, which helps in capturing the higher order contextual dependence relations between neighboring pixels. Once the final probability maps are generated, the framework is updated and retrained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates (FPRs). The tree-cover maps were generated for the state of California, which covers a total of 11 095 NAIP tiles and spans a total geographical area of 163 696 sq. miles. Our framework produced correct detection rates of around 88% for fragmented forests and 74% for urban tree-cover areas, with FPRs lower than 2% for both regions. Comparative studies with the National Land-Cover Data algorithm and the LiDAR high-resolution canopy height model showed the effectiveness of our algorithm for generating accurate high-resolution tree-cover maps. |
doi_str_mv | 10.1109/TGRS.2015.2428197 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1699268558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7112625</ieee_id><sourcerecordid>3760324701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6bddaa36fbea2651f00eb6d82f94e6232cf353f6179a557ff4bc34a82c6056fc3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEuXxAYiNJdYpHid24mVVXpUQVFDWkeOOi6GOi-OA-AM-m1RFrGZxz70jHULOgI0BmLpc3D49jzkDMeYFr0CVe2QEQlQZk0WxT0YMlMx4pfghOeq6N8agEFCOyM-EPqN3uk_B64RLOo-h0Y1buy45Q2-i9vgV4ju1IdJFRMym4RMjvcK1a1EnF9oBCp5C5unDZDanM69XGL_pS-faFdX0zq1esznGYcDr1iCdBr_p0zacRPPqEprURzwhB1avOzz9u8fk5eZ6Mb3L7h9vZ9PJfWa4ylMmm-VS61zaBjWXAixj2Mhlxa0qUPKcG5uL3EoolRaitLZoTF7oihvJhLQmPyYXu91NDB89dql-C31sh5c1SKW4rAZrAwU7ysTQdRFtvYnO6_hdA6u3wuut8HorvP4TPnTOdx2HiP98CcAlF_kvI2R91Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699268558</pqid></control><display><type>article</type><title>A Semiautomated Probabilistic Framework for Tree-Cover Delineation From 1-m NAIP Imagery Using a High-Performance Computing Architecture</title><source>IEEE Electronic Library (IEL)</source><creator>Basu, Saikat ; Ganguly, Sangram ; Nemani, Ramakrishna R. ; Mukhopadhyay, Supratik ; Gong Zhang ; Milesi, Cristina ; Michaelis, Andrew ; Votava, Petr ; Dubayah, Ralph ; Duncanson, Laura ; Cook, Bruce ; Yifan Yu ; Saatchi, Sassan ; DiBiano, Robert ; Karki, Manohar ; Boyda, Edward ; Kumar, Uttam ; Shuang Li</creator><creatorcontrib>Basu, Saikat ; Ganguly, Sangram ; Nemani, Ramakrishna R. ; Mukhopadhyay, Supratik ; Gong Zhang ; Milesi, Cristina ; Michaelis, Andrew ; Votava, Petr ; Dubayah, Ralph ; Duncanson, Laura ; Cook, Bruce ; Yifan Yu ; Saatchi, Sassan ; DiBiano, Robert ; Karki, Manohar ; Boyda, Edward ; Kumar, Uttam ; Shuang Li</creatorcontrib><description>Accurate tree-cover estimates are useful in deriving above-ground biomass density estimates from very high resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree-cover delineation in high-to-coarse-resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR data sets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree-cover estimates for the whole of Continental United States, using a high-performance computing architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on conditional random field, which helps in capturing the higher order contextual dependence relations between neighboring pixels. Once the final probability maps are generated, the framework is updated and retrained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates (FPRs). The tree-cover maps were generated for the state of California, which covers a total of 11 095 NAIP tiles and spans a total geographical area of 163 696 sq. miles. Our framework produced correct detection rates of around 88% for fragmented forests and 74% for urban tree-cover areas, with FPRs lower than 2% for both regions. Comparative studies with the National Land-Cover Data algorithm and the LiDAR high-resolution canopy height model showed the effectiveness of our algorithm for generating accurate high-resolution tree-cover maps.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2015.2428197</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Aerial imagery ; Algorithms ; conditional random field (CRF) ; Feature extraction ; high-performance computing (HPC) ; Image resolution ; Image segmentation ; Laser radar ; machine learning ; NASA ; National Agriculture Imagery Program (NAIP) ; neural network (NN) ; statistical region merging (SRM) ; Vegetation</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2015-10, Vol.53 (10), p.5690-5708</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6bddaa36fbea2651f00eb6d82f94e6232cf353f6179a557ff4bc34a82c6056fc3</citedby><cites>FETCH-LOGICAL-c293t-6bddaa36fbea2651f00eb6d82f94e6232cf353f6179a557ff4bc34a82c6056fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7112625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7112625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Basu, Saikat</creatorcontrib><creatorcontrib>Ganguly, Sangram</creatorcontrib><creatorcontrib>Nemani, Ramakrishna R.</creatorcontrib><creatorcontrib>Mukhopadhyay, Supratik</creatorcontrib><creatorcontrib>Gong Zhang</creatorcontrib><creatorcontrib>Milesi, Cristina</creatorcontrib><creatorcontrib>Michaelis, Andrew</creatorcontrib><creatorcontrib>Votava, Petr</creatorcontrib><creatorcontrib>Dubayah, Ralph</creatorcontrib><creatorcontrib>Duncanson, Laura</creatorcontrib><creatorcontrib>Cook, Bruce</creatorcontrib><creatorcontrib>Yifan Yu</creatorcontrib><creatorcontrib>Saatchi, Sassan</creatorcontrib><creatorcontrib>DiBiano, Robert</creatorcontrib><creatorcontrib>Karki, Manohar</creatorcontrib><creatorcontrib>Boyda, Edward</creatorcontrib><creatorcontrib>Kumar, Uttam</creatorcontrib><creatorcontrib>Shuang Li</creatorcontrib><title>A Semiautomated Probabilistic Framework for Tree-Cover Delineation From 1-m NAIP Imagery Using a High-Performance Computing Architecture</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Accurate tree-cover estimates are useful in deriving above-ground biomass density estimates from very high resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree-cover delineation in high-to-coarse-resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR data sets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree-cover estimates for the whole of Continental United States, using a high-performance computing architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on conditional random field, which helps in capturing the higher order contextual dependence relations between neighboring pixels. Once the final probability maps are generated, the framework is updated and retrained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates (FPRs). The tree-cover maps were generated for the state of California, which covers a total of 11 095 NAIP tiles and spans a total geographical area of 163 696 sq. miles. Our framework produced correct detection rates of around 88% for fragmented forests and 74% for urban tree-cover areas, with FPRs lower than 2% for both regions. Comparative studies with the National Land-Cover Data algorithm and the LiDAR high-resolution canopy height model showed the effectiveness of our algorithm for generating accurate high-resolution tree-cover maps.</description><subject>Accuracy</subject><subject>Aerial imagery</subject><subject>Algorithms</subject><subject>conditional random field (CRF)</subject><subject>Feature extraction</subject><subject>high-performance computing (HPC)</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Laser radar</subject><subject>machine learning</subject><subject>NASA</subject><subject>National Agriculture Imagery Program (NAIP)</subject><subject>neural network (NN)</subject><subject>statistical region merging (SRM)</subject><subject>Vegetation</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEuXxAYiNJdYpHid24mVVXpUQVFDWkeOOi6GOi-OA-AM-m1RFrGZxz70jHULOgI0BmLpc3D49jzkDMeYFr0CVe2QEQlQZk0WxT0YMlMx4pfghOeq6N8agEFCOyM-EPqN3uk_B64RLOo-h0Y1buy45Q2-i9vgV4ju1IdJFRMym4RMjvcK1a1EnF9oBCp5C5unDZDanM69XGL_pS-faFdX0zq1esznGYcDr1iCdBr_p0zacRPPqEprURzwhB1avOzz9u8fk5eZ6Mb3L7h9vZ9PJfWa4ylMmm-VS61zaBjWXAixj2Mhlxa0qUPKcG5uL3EoolRaitLZoTF7oihvJhLQmPyYXu91NDB89dql-C31sh5c1SKW4rAZrAwU7ysTQdRFtvYnO6_hdA6u3wuut8HorvP4TPnTOdx2HiP98CcAlF_kvI2R91Q</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Basu, Saikat</creator><creator>Ganguly, Sangram</creator><creator>Nemani, Ramakrishna R.</creator><creator>Mukhopadhyay, Supratik</creator><creator>Gong Zhang</creator><creator>Milesi, Cristina</creator><creator>Michaelis, Andrew</creator><creator>Votava, Petr</creator><creator>Dubayah, Ralph</creator><creator>Duncanson, Laura</creator><creator>Cook, Bruce</creator><creator>Yifan Yu</creator><creator>Saatchi, Sassan</creator><creator>DiBiano, Robert</creator><creator>Karki, Manohar</creator><creator>Boyda, Edward</creator><creator>Kumar, Uttam</creator><creator>Shuang Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>201510</creationdate><title>A Semiautomated Probabilistic Framework for Tree-Cover Delineation From 1-m NAIP Imagery Using a High-Performance Computing Architecture</title><author>Basu, Saikat ; Ganguly, Sangram ; Nemani, Ramakrishna R. ; Mukhopadhyay, Supratik ; Gong Zhang ; Milesi, Cristina ; Michaelis, Andrew ; Votava, Petr ; Dubayah, Ralph ; Duncanson, Laura ; Cook, Bruce ; Yifan Yu ; Saatchi, Sassan ; DiBiano, Robert ; Karki, Manohar ; Boyda, Edward ; Kumar, Uttam ; Shuang Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6bddaa36fbea2651f00eb6d82f94e6232cf353f6179a557ff4bc34a82c6056fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Aerial imagery</topic><topic>Algorithms</topic><topic>conditional random field (CRF)</topic><topic>Feature extraction</topic><topic>high-performance computing (HPC)</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Laser radar</topic><topic>machine learning</topic><topic>NASA</topic><topic>National Agriculture Imagery Program (NAIP)</topic><topic>neural network (NN)</topic><topic>statistical region merging (SRM)</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basu, Saikat</creatorcontrib><creatorcontrib>Ganguly, Sangram</creatorcontrib><creatorcontrib>Nemani, Ramakrishna R.</creatorcontrib><creatorcontrib>Mukhopadhyay, Supratik</creatorcontrib><creatorcontrib>Gong Zhang</creatorcontrib><creatorcontrib>Milesi, Cristina</creatorcontrib><creatorcontrib>Michaelis, Andrew</creatorcontrib><creatorcontrib>Votava, Petr</creatorcontrib><creatorcontrib>Dubayah, Ralph</creatorcontrib><creatorcontrib>Duncanson, Laura</creatorcontrib><creatorcontrib>Cook, Bruce</creatorcontrib><creatorcontrib>Yifan Yu</creatorcontrib><creatorcontrib>Saatchi, Sassan</creatorcontrib><creatorcontrib>DiBiano, Robert</creatorcontrib><creatorcontrib>Karki, Manohar</creatorcontrib><creatorcontrib>Boyda, Edward</creatorcontrib><creatorcontrib>Kumar, Uttam</creatorcontrib><creatorcontrib>Shuang Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Basu, Saikat</au><au>Ganguly, Sangram</au><au>Nemani, Ramakrishna R.</au><au>Mukhopadhyay, Supratik</au><au>Gong Zhang</au><au>Milesi, Cristina</au><au>Michaelis, Andrew</au><au>Votava, Petr</au><au>Dubayah, Ralph</au><au>Duncanson, Laura</au><au>Cook, Bruce</au><au>Yifan Yu</au><au>Saatchi, Sassan</au><au>DiBiano, Robert</au><au>Karki, Manohar</au><au>Boyda, Edward</au><au>Kumar, Uttam</au><au>Shuang Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Semiautomated Probabilistic Framework for Tree-Cover Delineation From 1-m NAIP Imagery Using a High-Performance Computing Architecture</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2015-10</date><risdate>2015</risdate><volume>53</volume><issue>10</issue><spage>5690</spage><epage>5708</epage><pages>5690-5708</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Accurate tree-cover estimates are useful in deriving above-ground biomass density estimates from very high resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree-cover delineation in high-to-coarse-resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR data sets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree-cover estimates for the whole of Continental United States, using a high-performance computing architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on conditional random field, which helps in capturing the higher order contextual dependence relations between neighboring pixels. Once the final probability maps are generated, the framework is updated and retrained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates (FPRs). The tree-cover maps were generated for the state of California, which covers a total of 11 095 NAIP tiles and spans a total geographical area of 163 696 sq. miles. Our framework produced correct detection rates of around 88% for fragmented forests and 74% for urban tree-cover areas, with FPRs lower than 2% for both regions. Comparative studies with the National Land-Cover Data algorithm and the LiDAR high-resolution canopy height model showed the effectiveness of our algorithm for generating accurate high-resolution tree-cover maps.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2015.2428197</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2015-10, Vol.53 (10), p.5690-5708 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_1699268558 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Aerial imagery Algorithms conditional random field (CRF) Feature extraction high-performance computing (HPC) Image resolution Image segmentation Laser radar machine learning NASA National Agriculture Imagery Program (NAIP) neural network (NN) statistical region merging (SRM) Vegetation |
title | A Semiautomated Probabilistic Framework for Tree-Cover Delineation From 1-m NAIP Imagery Using a High-Performance Computing Architecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Semiautomated%20Probabilistic%20Framework%20for%20Tree-Cover%20Delineation%20From%201-m%20NAIP%20Imagery%20Using%20a%20High-Performance%20Computing%20Architecture&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Basu,%20Saikat&rft.date=2015-10&rft.volume=53&rft.issue=10&rft.spage=5690&rft.epage=5708&rft.pages=5690-5708&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2015.2428197&rft_dat=%3Cproquest_RIE%3E3760324701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1699268558&rft_id=info:pmid/&rft_ieee_id=7112625&rfr_iscdi=true |