A Semiautomated Probabilistic Framework for Tree-Cover Delineation From 1-m NAIP Imagery Using a High-Performance Computing Architecture

Accurate tree-cover estimates are useful in deriving above-ground biomass density estimates from very high resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree-cover delineation in high-to-coarse-resolution satellite imagery, but most of them do not scale t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2015-10, Vol.53 (10), p.5690-5708
Hauptverfasser: Basu, Saikat, Ganguly, Sangram, Nemani, Ramakrishna R., Mukhopadhyay, Supratik, Gong Zhang, Milesi, Cristina, Michaelis, Andrew, Votava, Petr, Dubayah, Ralph, Duncanson, Laura, Cook, Bruce, Yifan Yu, Saatchi, Sassan, DiBiano, Robert, Karki, Manohar, Boyda, Edward, Kumar, Uttam, Shuang Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5708
container_issue 10
container_start_page 5690
container_title IEEE transactions on geoscience and remote sensing
container_volume 53
creator Basu, Saikat
Ganguly, Sangram
Nemani, Ramakrishna R.
Mukhopadhyay, Supratik
Gong Zhang
Milesi, Cristina
Michaelis, Andrew
Votava, Petr
Dubayah, Ralph
Duncanson, Laura
Cook, Bruce
Yifan Yu
Saatchi, Sassan
DiBiano, Robert
Karki, Manohar
Boyda, Edward
Kumar, Uttam
Shuang Li
description Accurate tree-cover estimates are useful in deriving above-ground biomass density estimates from very high resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree-cover delineation in high-to-coarse-resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR data sets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree-cover estimates for the whole of Continental United States, using a high-performance computing architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on conditional random field, which helps in capturing the higher order contextual dependence relations between neighboring pixels. Once the final probability maps are generated, the framework is updated and retrained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates (FPRs). The tree-cover maps were generated for the state of California, which covers a total of 11 095 NAIP tiles and spans a total geographical area of 163 696 sq. miles. Our framework produced correct detection rates of around 88% for fragmented forests and 74% for urban tree-cover areas, with FPRs lower than 2% for both regions. Comparative studies with the National Land-Cover Data algorithm and the LiDAR high-resolution canopy height model showed the effectiveness of our algorithm for generating accurate high-resolution tree-cover maps.
doi_str_mv 10.1109/TGRS.2015.2428197
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1699268558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7112625</ieee_id><sourcerecordid>3760324701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6bddaa36fbea2651f00eb6d82f94e6232cf353f6179a557ff4bc34a82c6056fc3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEuXxAYiNJdYpHid24mVVXpUQVFDWkeOOi6GOi-OA-AM-m1RFrGZxz70jHULOgI0BmLpc3D49jzkDMeYFr0CVe2QEQlQZk0WxT0YMlMx4pfghOeq6N8agEFCOyM-EPqN3uk_B64RLOo-h0Y1buy45Q2-i9vgV4ju1IdJFRMym4RMjvcK1a1EnF9oBCp5C5unDZDanM69XGL_pS-faFdX0zq1esznGYcDr1iCdBr_p0zacRPPqEprURzwhB1avOzz9u8fk5eZ6Mb3L7h9vZ9PJfWa4ylMmm-VS61zaBjWXAixj2Mhlxa0qUPKcG5uL3EoolRaitLZoTF7oihvJhLQmPyYXu91NDB89dql-C31sh5c1SKW4rAZrAwU7ysTQdRFtvYnO6_hdA6u3wuut8HorvP4TPnTOdx2HiP98CcAlF_kvI2R91Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699268558</pqid></control><display><type>article</type><title>A Semiautomated Probabilistic Framework for Tree-Cover Delineation From 1-m NAIP Imagery Using a High-Performance Computing Architecture</title><source>IEEE Electronic Library (IEL)</source><creator>Basu, Saikat ; Ganguly, Sangram ; Nemani, Ramakrishna R. ; Mukhopadhyay, Supratik ; Gong Zhang ; Milesi, Cristina ; Michaelis, Andrew ; Votava, Petr ; Dubayah, Ralph ; Duncanson, Laura ; Cook, Bruce ; Yifan Yu ; Saatchi, Sassan ; DiBiano, Robert ; Karki, Manohar ; Boyda, Edward ; Kumar, Uttam ; Shuang Li</creator><creatorcontrib>Basu, Saikat ; Ganguly, Sangram ; Nemani, Ramakrishna R. ; Mukhopadhyay, Supratik ; Gong Zhang ; Milesi, Cristina ; Michaelis, Andrew ; Votava, Petr ; Dubayah, Ralph ; Duncanson, Laura ; Cook, Bruce ; Yifan Yu ; Saatchi, Sassan ; DiBiano, Robert ; Karki, Manohar ; Boyda, Edward ; Kumar, Uttam ; Shuang Li</creatorcontrib><description>Accurate tree-cover estimates are useful in deriving above-ground biomass density estimates from very high resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree-cover delineation in high-to-coarse-resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR data sets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree-cover estimates for the whole of Continental United States, using a high-performance computing architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on conditional random field, which helps in capturing the higher order contextual dependence relations between neighboring pixels. Once the final probability maps are generated, the framework is updated and retrained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates (FPRs). The tree-cover maps were generated for the state of California, which covers a total of 11 095 NAIP tiles and spans a total geographical area of 163 696 sq. miles. Our framework produced correct detection rates of around 88% for fragmented forests and 74% for urban tree-cover areas, with FPRs lower than 2% for both regions. Comparative studies with the National Land-Cover Data algorithm and the LiDAR high-resolution canopy height model showed the effectiveness of our algorithm for generating accurate high-resolution tree-cover maps.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2015.2428197</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Aerial imagery ; Algorithms ; conditional random field (CRF) ; Feature extraction ; high-performance computing (HPC) ; Image resolution ; Image segmentation ; Laser radar ; machine learning ; NASA ; National Agriculture Imagery Program (NAIP) ; neural network (NN) ; statistical region merging (SRM) ; Vegetation</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2015-10, Vol.53 (10), p.5690-5708</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6bddaa36fbea2651f00eb6d82f94e6232cf353f6179a557ff4bc34a82c6056fc3</citedby><cites>FETCH-LOGICAL-c293t-6bddaa36fbea2651f00eb6d82f94e6232cf353f6179a557ff4bc34a82c6056fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7112625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7112625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Basu, Saikat</creatorcontrib><creatorcontrib>Ganguly, Sangram</creatorcontrib><creatorcontrib>Nemani, Ramakrishna R.</creatorcontrib><creatorcontrib>Mukhopadhyay, Supratik</creatorcontrib><creatorcontrib>Gong Zhang</creatorcontrib><creatorcontrib>Milesi, Cristina</creatorcontrib><creatorcontrib>Michaelis, Andrew</creatorcontrib><creatorcontrib>Votava, Petr</creatorcontrib><creatorcontrib>Dubayah, Ralph</creatorcontrib><creatorcontrib>Duncanson, Laura</creatorcontrib><creatorcontrib>Cook, Bruce</creatorcontrib><creatorcontrib>Yifan Yu</creatorcontrib><creatorcontrib>Saatchi, Sassan</creatorcontrib><creatorcontrib>DiBiano, Robert</creatorcontrib><creatorcontrib>Karki, Manohar</creatorcontrib><creatorcontrib>Boyda, Edward</creatorcontrib><creatorcontrib>Kumar, Uttam</creatorcontrib><creatorcontrib>Shuang Li</creatorcontrib><title>A Semiautomated Probabilistic Framework for Tree-Cover Delineation From 1-m NAIP Imagery Using a High-Performance Computing Architecture</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Accurate tree-cover estimates are useful in deriving above-ground biomass density estimates from very high resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree-cover delineation in high-to-coarse-resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR data sets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree-cover estimates for the whole of Continental United States, using a high-performance computing architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on conditional random field, which helps in capturing the higher order contextual dependence relations between neighboring pixels. Once the final probability maps are generated, the framework is updated and retrained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates (FPRs). The tree-cover maps were generated for the state of California, which covers a total of 11 095 NAIP tiles and spans a total geographical area of 163 696 sq. miles. Our framework produced correct detection rates of around 88% for fragmented forests and 74% for urban tree-cover areas, with FPRs lower than 2% for both regions. Comparative studies with the National Land-Cover Data algorithm and the LiDAR high-resolution canopy height model showed the effectiveness of our algorithm for generating accurate high-resolution tree-cover maps.</description><subject>Accuracy</subject><subject>Aerial imagery</subject><subject>Algorithms</subject><subject>conditional random field (CRF)</subject><subject>Feature extraction</subject><subject>high-performance computing (HPC)</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Laser radar</subject><subject>machine learning</subject><subject>NASA</subject><subject>National Agriculture Imagery Program (NAIP)</subject><subject>neural network (NN)</subject><subject>statistical region merging (SRM)</subject><subject>Vegetation</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEuXxAYiNJdYpHid24mVVXpUQVFDWkeOOi6GOi-OA-AM-m1RFrGZxz70jHULOgI0BmLpc3D49jzkDMeYFr0CVe2QEQlQZk0WxT0YMlMx4pfghOeq6N8agEFCOyM-EPqN3uk_B64RLOo-h0Y1buy45Q2-i9vgV4ju1IdJFRMym4RMjvcK1a1EnF9oBCp5C5unDZDanM69XGL_pS-faFdX0zq1esznGYcDr1iCdBr_p0zacRPPqEprURzwhB1avOzz9u8fk5eZ6Mb3L7h9vZ9PJfWa4ylMmm-VS61zaBjWXAixj2Mhlxa0qUPKcG5uL3EoolRaitLZoTF7oihvJhLQmPyYXu91NDB89dql-C31sh5c1SKW4rAZrAwU7ysTQdRFtvYnO6_hdA6u3wuut8HorvP4TPnTOdx2HiP98CcAlF_kvI2R91Q</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Basu, Saikat</creator><creator>Ganguly, Sangram</creator><creator>Nemani, Ramakrishna R.</creator><creator>Mukhopadhyay, Supratik</creator><creator>Gong Zhang</creator><creator>Milesi, Cristina</creator><creator>Michaelis, Andrew</creator><creator>Votava, Petr</creator><creator>Dubayah, Ralph</creator><creator>Duncanson, Laura</creator><creator>Cook, Bruce</creator><creator>Yifan Yu</creator><creator>Saatchi, Sassan</creator><creator>DiBiano, Robert</creator><creator>Karki, Manohar</creator><creator>Boyda, Edward</creator><creator>Kumar, Uttam</creator><creator>Shuang Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>201510</creationdate><title>A Semiautomated Probabilistic Framework for Tree-Cover Delineation From 1-m NAIP Imagery Using a High-Performance Computing Architecture</title><author>Basu, Saikat ; Ganguly, Sangram ; Nemani, Ramakrishna R. ; Mukhopadhyay, Supratik ; Gong Zhang ; Milesi, Cristina ; Michaelis, Andrew ; Votava, Petr ; Dubayah, Ralph ; Duncanson, Laura ; Cook, Bruce ; Yifan Yu ; Saatchi, Sassan ; DiBiano, Robert ; Karki, Manohar ; Boyda, Edward ; Kumar, Uttam ; Shuang Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6bddaa36fbea2651f00eb6d82f94e6232cf353f6179a557ff4bc34a82c6056fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Aerial imagery</topic><topic>Algorithms</topic><topic>conditional random field (CRF)</topic><topic>Feature extraction</topic><topic>high-performance computing (HPC)</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Laser radar</topic><topic>machine learning</topic><topic>NASA</topic><topic>National Agriculture Imagery Program (NAIP)</topic><topic>neural network (NN)</topic><topic>statistical region merging (SRM)</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basu, Saikat</creatorcontrib><creatorcontrib>Ganguly, Sangram</creatorcontrib><creatorcontrib>Nemani, Ramakrishna R.</creatorcontrib><creatorcontrib>Mukhopadhyay, Supratik</creatorcontrib><creatorcontrib>Gong Zhang</creatorcontrib><creatorcontrib>Milesi, Cristina</creatorcontrib><creatorcontrib>Michaelis, Andrew</creatorcontrib><creatorcontrib>Votava, Petr</creatorcontrib><creatorcontrib>Dubayah, Ralph</creatorcontrib><creatorcontrib>Duncanson, Laura</creatorcontrib><creatorcontrib>Cook, Bruce</creatorcontrib><creatorcontrib>Yifan Yu</creatorcontrib><creatorcontrib>Saatchi, Sassan</creatorcontrib><creatorcontrib>DiBiano, Robert</creatorcontrib><creatorcontrib>Karki, Manohar</creatorcontrib><creatorcontrib>Boyda, Edward</creatorcontrib><creatorcontrib>Kumar, Uttam</creatorcontrib><creatorcontrib>Shuang Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Basu, Saikat</au><au>Ganguly, Sangram</au><au>Nemani, Ramakrishna R.</au><au>Mukhopadhyay, Supratik</au><au>Gong Zhang</au><au>Milesi, Cristina</au><au>Michaelis, Andrew</au><au>Votava, Petr</au><au>Dubayah, Ralph</au><au>Duncanson, Laura</au><au>Cook, Bruce</au><au>Yifan Yu</au><au>Saatchi, Sassan</au><au>DiBiano, Robert</au><au>Karki, Manohar</au><au>Boyda, Edward</au><au>Kumar, Uttam</au><au>Shuang Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Semiautomated Probabilistic Framework for Tree-Cover Delineation From 1-m NAIP Imagery Using a High-Performance Computing Architecture</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2015-10</date><risdate>2015</risdate><volume>53</volume><issue>10</issue><spage>5690</spage><epage>5708</epage><pages>5690-5708</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Accurate tree-cover estimates are useful in deriving above-ground biomass density estimates from very high resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree-cover delineation in high-to-coarse-resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR data sets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree-cover estimates for the whole of Continental United States, using a high-performance computing architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on conditional random field, which helps in capturing the higher order contextual dependence relations between neighboring pixels. Once the final probability maps are generated, the framework is updated and retrained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates (FPRs). The tree-cover maps were generated for the state of California, which covers a total of 11 095 NAIP tiles and spans a total geographical area of 163 696 sq. miles. Our framework produced correct detection rates of around 88% for fragmented forests and 74% for urban tree-cover areas, with FPRs lower than 2% for both regions. Comparative studies with the National Land-Cover Data algorithm and the LiDAR high-resolution canopy height model showed the effectiveness of our algorithm for generating accurate high-resolution tree-cover maps.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2015.2428197</doi><tpages>19</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2015-10, Vol.53 (10), p.5690-5708
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_1699268558
source IEEE Electronic Library (IEL)
subjects Accuracy
Aerial imagery
Algorithms
conditional random field (CRF)
Feature extraction
high-performance computing (HPC)
Image resolution
Image segmentation
Laser radar
machine learning
NASA
National Agriculture Imagery Program (NAIP)
neural network (NN)
statistical region merging (SRM)
Vegetation
title A Semiautomated Probabilistic Framework for Tree-Cover Delineation From 1-m NAIP Imagery Using a High-Performance Computing Architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Semiautomated%20Probabilistic%20Framework%20for%20Tree-Cover%20Delineation%20From%201-m%20NAIP%20Imagery%20Using%20a%20High-Performance%20Computing%20Architecture&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Basu,%20Saikat&rft.date=2015-10&rft.volume=53&rft.issue=10&rft.spage=5690&rft.epage=5708&rft.pages=5690-5708&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2015.2428197&rft_dat=%3Cproquest_RIE%3E3760324701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1699268558&rft_id=info:pmid/&rft_ieee_id=7112625&rfr_iscdi=true