Robust High Dynamic Range Imaging by Rank Minimization

This paper introduces a new high dynamic range (HDR) imaging algorithm which utilizes rank minimization. Assuming a camera responses linearly to scene radiance, the input low dynamic range (LDR) images captured with different exposure time exhibit a linear dependency and form a rank-1 matrix when st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2015-06, Vol.37 (6), p.1219-1232
Hauptverfasser: Oh, Tae-Hyun, Lee, Joon-Young, Tai, Yu-Wing, Kweon, In So
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1232
container_issue 6
container_start_page 1219
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 37
creator Oh, Tae-Hyun
Lee, Joon-Young
Tai, Yu-Wing
Kweon, In So
description This paper introduces a new high dynamic range (HDR) imaging algorithm which utilizes rank minimization. Assuming a camera responses linearly to scene radiance, the input low dynamic range (LDR) images captured with different exposure time exhibit a linear dependency and form a rank-1 matrix when stacking intensity of each corresponding pixel together. In practice, misalignments caused by camera motion, presences of moving objects, saturations and image noise break the rank-1 structure of the LDR images. To address these problems, we present a rank minimization algorithm which simultaneously aligns LDR images and detects outliers for robust HDR generation. We evaluate the performances of our algorithm systematically using synthetic examples and qualitatively compare our results with results from the state-of-the-art HDR algorithms using challenging real world examples.
doi_str_mv 10.1109/TPAMI.2014.2361338
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1699221936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6915885</ieee_id><sourcerecordid>1711547955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-af94a13e4b2ade93cb87b06289b5eab45045e30bb476c5e479f1e472f1d303de3</originalsourceid><addsrcrecordid>eNpdkE1PwkAQhjdGI4j-AU1MEy9eivvd3SPBD0ggGoLnzW67rYu0xW57wF_vIsjBy0wy87yTyQPANYJDhKB8WL6N5tMhhogOMeGIEHEC-kgSGRNG5CnoQ8RxLAQWPXDh_QoGkkFyDnqYE5YQSvuAL2rT-TaauOIjetxWunRptNBVYaNpqQtXFZHZ7gaf0dxVrnTfunV1dQnOcr329urQB-D9-Wk5nsSz15fpeDSLU8p5G-tcUo2IpQbrzEqSGpEYyLGQhlltwjeUWQKNoQlPmaWJzFGoOEcZgSSzZADu93c3Tf3VWd-q0vnUrte6snXnFUoQYiHGWEDv_qGrumuq8J1CXEqMgxkeKLyn0qb2vrG52jSu1M1WIah2VtWvVbWzqg5WQ-j2cLozpc2OkT-NAbjZA85ae1xziZgQjPwAz0h5ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699221936</pqid></control><display><type>article</type><title>Robust High Dynamic Range Imaging by Rank Minimization</title><source>IEEE Electronic Library (IEL)</source><creator>Oh, Tae-Hyun ; Lee, Joon-Young ; Tai, Yu-Wing ; Kweon, In So</creator><creatorcontrib>Oh, Tae-Hyun ; Lee, Joon-Young ; Tai, Yu-Wing ; Kweon, In So</creatorcontrib><description>This paper introduces a new high dynamic range (HDR) imaging algorithm which utilizes rank minimization. Assuming a camera responses linearly to scene radiance, the input low dynamic range (LDR) images captured with different exposure time exhibit a linear dependency and form a rank-1 matrix when stacking intensity of each corresponding pixel together. In practice, misalignments caused by camera motion, presences of moving objects, saturations and image noise break the rank-1 structure of the LDR images. To address these problems, we present a rank minimization algorithm which simultaneously aligns LDR images and detects outliers for robust HDR generation. We evaluate the performances of our algorithm systematically using synthetic examples and qualitatively compare our results with results from the state-of-the-art HDR algorithms using challenging real world examples.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2014.2361338</identifier><identifier>PMID: 26357344</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Alignment ; Cameras ; Dynamic range ; Heuristic algorithms ; High Dynamic Range Image ; Image reconstruction ; Matrix Completion ; Minimization ; Multi-exposure fusion ; Rank minimization ; Robustness ; RPCA</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2015-06, Vol.37 (6), p.1219-1232</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-af94a13e4b2ade93cb87b06289b5eab45045e30bb476c5e479f1e472f1d303de3</citedby><cites>FETCH-LOGICAL-c466t-af94a13e4b2ade93cb87b06289b5eab45045e30bb476c5e479f1e472f1d303de3</cites><orcidid>0000-0002-3148-0380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6915885$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6915885$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26357344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Tae-Hyun</creatorcontrib><creatorcontrib>Lee, Joon-Young</creatorcontrib><creatorcontrib>Tai, Yu-Wing</creatorcontrib><creatorcontrib>Kweon, In So</creatorcontrib><title>Robust High Dynamic Range Imaging by Rank Minimization</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>This paper introduces a new high dynamic range (HDR) imaging algorithm which utilizes rank minimization. Assuming a camera responses linearly to scene radiance, the input low dynamic range (LDR) images captured with different exposure time exhibit a linear dependency and form a rank-1 matrix when stacking intensity of each corresponding pixel together. In practice, misalignments caused by camera motion, presences of moving objects, saturations and image noise break the rank-1 structure of the LDR images. To address these problems, we present a rank minimization algorithm which simultaneously aligns LDR images and detects outliers for robust HDR generation. We evaluate the performances of our algorithm systematically using synthetic examples and qualitatively compare our results with results from the state-of-the-art HDR algorithms using challenging real world examples.</description><subject>Alignment</subject><subject>Cameras</subject><subject>Dynamic range</subject><subject>Heuristic algorithms</subject><subject>High Dynamic Range Image</subject><subject>Image reconstruction</subject><subject>Matrix Completion</subject><subject>Minimization</subject><subject>Multi-exposure fusion</subject><subject>Rank minimization</subject><subject>Robustness</subject><subject>RPCA</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwkAQhjdGI4j-AU1MEy9eivvd3SPBD0ggGoLnzW67rYu0xW57wF_vIsjBy0wy87yTyQPANYJDhKB8WL6N5tMhhogOMeGIEHEC-kgSGRNG5CnoQ8RxLAQWPXDh_QoGkkFyDnqYE5YQSvuAL2rT-TaauOIjetxWunRptNBVYaNpqQtXFZHZ7gaf0dxVrnTfunV1dQnOcr329urQB-D9-Wk5nsSz15fpeDSLU8p5G-tcUo2IpQbrzEqSGpEYyLGQhlltwjeUWQKNoQlPmaWJzFGoOEcZgSSzZADu93c3Tf3VWd-q0vnUrte6snXnFUoQYiHGWEDv_qGrumuq8J1CXEqMgxkeKLyn0qb2vrG52jSu1M1WIah2VtWvVbWzqg5WQ-j2cLozpc2OkT-NAbjZA85ae1xziZgQjPwAz0h5ZA</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Oh, Tae-Hyun</creator><creator>Lee, Joon-Young</creator><creator>Tai, Yu-Wing</creator><creator>Kweon, In So</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3148-0380</orcidid></search><sort><creationdate>20150601</creationdate><title>Robust High Dynamic Range Imaging by Rank Minimization</title><author>Oh, Tae-Hyun ; Lee, Joon-Young ; Tai, Yu-Wing ; Kweon, In So</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-af94a13e4b2ade93cb87b06289b5eab45045e30bb476c5e479f1e472f1d303de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alignment</topic><topic>Cameras</topic><topic>Dynamic range</topic><topic>Heuristic algorithms</topic><topic>High Dynamic Range Image</topic><topic>Image reconstruction</topic><topic>Matrix Completion</topic><topic>Minimization</topic><topic>Multi-exposure fusion</topic><topic>Rank minimization</topic><topic>Robustness</topic><topic>RPCA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Tae-Hyun</creatorcontrib><creatorcontrib>Lee, Joon-Young</creatorcontrib><creatorcontrib>Tai, Yu-Wing</creatorcontrib><creatorcontrib>Kweon, In So</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oh, Tae-Hyun</au><au>Lee, Joon-Young</au><au>Tai, Yu-Wing</au><au>Kweon, In So</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust High Dynamic Range Imaging by Rank Minimization</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>37</volume><issue>6</issue><spage>1219</spage><epage>1232</epage><pages>1219-1232</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>This paper introduces a new high dynamic range (HDR) imaging algorithm which utilizes rank minimization. Assuming a camera responses linearly to scene radiance, the input low dynamic range (LDR) images captured with different exposure time exhibit a linear dependency and form a rank-1 matrix when stacking intensity of each corresponding pixel together. In practice, misalignments caused by camera motion, presences of moving objects, saturations and image noise break the rank-1 structure of the LDR images. To address these problems, we present a rank minimization algorithm which simultaneously aligns LDR images and detects outliers for robust HDR generation. We evaluate the performances of our algorithm systematically using synthetic examples and qualitatively compare our results with results from the state-of-the-art HDR algorithms using challenging real world examples.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26357344</pmid><doi>10.1109/TPAMI.2014.2361338</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3148-0380</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2015-06, Vol.37 (6), p.1219-1232
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_journals_1699221936
source IEEE Electronic Library (IEL)
subjects Alignment
Cameras
Dynamic range
Heuristic algorithms
High Dynamic Range Image
Image reconstruction
Matrix Completion
Minimization
Multi-exposure fusion
Rank minimization
Robustness
RPCA
title Robust High Dynamic Range Imaging by Rank Minimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T12%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20High%20Dynamic%20Range%20Imaging%20by%20Rank%20Minimization&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Oh,%20Tae-Hyun&rft.date=2015-06-01&rft.volume=37&rft.issue=6&rft.spage=1219&rft.epage=1232&rft.pages=1219-1232&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2014.2361338&rft_dat=%3Cproquest_RIE%3E1711547955%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1699221936&rft_id=info:pmid/26357344&rft_ieee_id=6915885&rfr_iscdi=true