Robust High Dynamic Range Imaging by Rank Minimization

This paper introduces a new high dynamic range (HDR) imaging algorithm which utilizes rank minimization. Assuming a camera responses linearly to scene radiance, the input low dynamic range (LDR) images captured with different exposure time exhibit a linear dependency and form a rank-1 matrix when st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2015-06, Vol.37 (6), p.1219-1232
Hauptverfasser: Oh, Tae-Hyun, Lee, Joon-Young, Tai, Yu-Wing, Kweon, In So
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a new high dynamic range (HDR) imaging algorithm which utilizes rank minimization. Assuming a camera responses linearly to scene radiance, the input low dynamic range (LDR) images captured with different exposure time exhibit a linear dependency and form a rank-1 matrix when stacking intensity of each corresponding pixel together. In practice, misalignments caused by camera motion, presences of moving objects, saturations and image noise break the rank-1 structure of the LDR images. To address these problems, we present a rank minimization algorithm which simultaneously aligns LDR images and detects outliers for robust HDR generation. We evaluate the performances of our algorithm systematically using synthetic examples and qualitatively compare our results with results from the state-of-the-art HDR algorithms using challenging real world examples.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2014.2361338