Probabilistic Deformation Models for Challenging Periocular Image Verification
The periocular region as a biometric trait has recently gained considerable traction, especially under challenging scenarios where reliable iris information is not available for human authentication. In this paper, we consider the problem of one-to-one (1 : 1) matching of highly nonideal periocular...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2015-09, Vol.10 (9), p.1875-1890 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1890 |
---|---|
container_issue | 9 |
container_start_page | 1875 |
container_title | IEEE transactions on information forensics and security |
container_volume | 10 |
creator | Smereka, Jonathon M. Boddeti, Vishnu Naresh Vijaya Kumar, B. V. K. |
description | The periocular region as a biometric trait has recently gained considerable traction, especially under challenging scenarios where reliable iris information is not available for human authentication. In this paper, we consider the problem of one-to-one (1 : 1) matching of highly nonideal periocular images captured in-the-wild under unconstrained imaging conditions. Such images exhibit considerable appearance variations, including nonuniform illumination variations, motion and defocus blur, off-axis gaze, and nonstationary pattern deformations. To address these challenges, we propose periocular probabilistic deformation models (PPDMs) that: 1) reduce the image matching problem to matching local image regions and 2) approximate the periocular distortions by local patch level spatial translations whose relationships are modeled by a Gaussian Markov random field. Given a periocular image pair, we determine the distortion-tolerant similarity metric by regularizing local match scores by the maximum aposteriori probability estimate of the relative local deformations between them. Unlike the existing global periocular image matching techniques, by accounting for local image deformations in the periocular matching process, PPDM exhibits greater tolerance to pattern variations. We demonstrate the effectiveness of our model via extensive evaluation on a large number of in-the-wild periocular images. We find that PPDMs outperform many benchmark 1 : 1 image matching techniques (improving verification rates at 0.1% false accept rate by ~30% over previous work and ~40% when compared with the best baseline) in challenging scenarios leading to state-of-the-art verification performance on multiple real-world periocular data sets. |
doi_str_mv | 10.1109/TIFS.2015.2434271 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1698574187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7109909</ieee_id><sourcerecordid>3755373541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-8279298f7d45574321e3da6a2db89905aef6cec904eb137b610fcefb622260f23</originalsourceid><addsrcrecordid>eNpdkE1PwzAMhisEEmPwAxCXSly4dMRpmjZHNBhM4mMSg2uUps7I1DYjaQ_8ezo27cDJlvW8tvVE0SWQCQARt8v57H1CCWQTylJGcziKRpBlPOGEwvGhh_Q0OgthTQhjwItR9LrwrlSlrW3orI7v0TjfqM66Nn5xFdYhHgbx9EvVNbYr267iBXrrdF8rH88btcL4cxgYq_9C59GJUXXAi30dRx-zh-X0KXl-e5xP754TnQraJQXNBRWFySuWZTlLKWBaKa5oVRZCkEyh4Rq1IAxLSPOSAzEaTckppZwYmo6jm93ejXffPYZONjZorGvVouuDhBwKQYExPqDX_9C16307fCeBi2I4D0U-ULCjtHcheDRy422j_I8EIreG5daw3BqWe8ND5mqXsYh44PMBFkSkv6ebdqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698574187</pqid></control><display><type>article</type><title>Probabilistic Deformation Models for Challenging Periocular Image Verification</title><source>IEEE Electronic Library (IEL)</source><creator>Smereka, Jonathon M. ; Boddeti, Vishnu Naresh ; Vijaya Kumar, B. V. K.</creator><creatorcontrib>Smereka, Jonathon M. ; Boddeti, Vishnu Naresh ; Vijaya Kumar, B. V. K.</creatorcontrib><description>The periocular region as a biometric trait has recently gained considerable traction, especially under challenging scenarios where reliable iris information is not available for human authentication. In this paper, we consider the problem of one-to-one (1 : 1) matching of highly nonideal periocular images captured in-the-wild under unconstrained imaging conditions. Such images exhibit considerable appearance variations, including nonuniform illumination variations, motion and defocus blur, off-axis gaze, and nonstationary pattern deformations. To address these challenges, we propose periocular probabilistic deformation models (PPDMs) that: 1) reduce the image matching problem to matching local image regions and 2) approximate the periocular distortions by local patch level spatial translations whose relationships are modeled by a Gaussian Markov random field. Given a periocular image pair, we determine the distortion-tolerant similarity metric by regularizing local match scores by the maximum aposteriori probability estimate of the relative local deformations between them. Unlike the existing global periocular image matching techniques, by accounting for local image deformations in the periocular matching process, PPDM exhibits greater tolerance to pattern variations. We demonstrate the effectiveness of our model via extensive evaluation on a large number of in-the-wild periocular images. We find that PPDMs outperform many benchmark 1 : 1 image matching techniques (improving verification rates at 0.1% false accept rate by ~30% over previous work and ~40% when compared with the best baseline) in challenging scenarios leading to state-of-the-art verification performance on multiple real-world periocular data sets.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2015.2434271</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Correlation ; Deformable models ; Deformation ; Distortion ; Face ; Face recognition ; Iris recognition ; Matching ; Nonuniform ; Probabilistic methods ; Probability theory ; Probes ; Program verification (computers) ; Training</subject><ispartof>IEEE transactions on information forensics and security, 2015-09, Vol.10 (9), p.1875-1890</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-8279298f7d45574321e3da6a2db89905aef6cec904eb137b610fcefb622260f23</citedby><cites>FETCH-LOGICAL-c392t-8279298f7d45574321e3da6a2db89905aef6cec904eb137b610fcefb622260f23</cites><orcidid>0000-0001-9262-1143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7109909$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7109909$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Smereka, Jonathon M.</creatorcontrib><creatorcontrib>Boddeti, Vishnu Naresh</creatorcontrib><creatorcontrib>Vijaya Kumar, B. V. K.</creatorcontrib><title>Probabilistic Deformation Models for Challenging Periocular Image Verification</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>The periocular region as a biometric trait has recently gained considerable traction, especially under challenging scenarios where reliable iris information is not available for human authentication. In this paper, we consider the problem of one-to-one (1 : 1) matching of highly nonideal periocular images captured in-the-wild under unconstrained imaging conditions. Such images exhibit considerable appearance variations, including nonuniform illumination variations, motion and defocus blur, off-axis gaze, and nonstationary pattern deformations. To address these challenges, we propose periocular probabilistic deformation models (PPDMs) that: 1) reduce the image matching problem to matching local image regions and 2) approximate the periocular distortions by local patch level spatial translations whose relationships are modeled by a Gaussian Markov random field. Given a periocular image pair, we determine the distortion-tolerant similarity metric by regularizing local match scores by the maximum aposteriori probability estimate of the relative local deformations between them. Unlike the existing global periocular image matching techniques, by accounting for local image deformations in the periocular matching process, PPDM exhibits greater tolerance to pattern variations. We demonstrate the effectiveness of our model via extensive evaluation on a large number of in-the-wild periocular images. We find that PPDMs outperform many benchmark 1 : 1 image matching techniques (improving verification rates at 0.1% false accept rate by ~30% over previous work and ~40% when compared with the best baseline) in challenging scenarios leading to state-of-the-art verification performance on multiple real-world periocular data sets.</description><subject>Correlation</subject><subject>Deformable models</subject><subject>Deformation</subject><subject>Distortion</subject><subject>Face</subject><subject>Face recognition</subject><subject>Iris recognition</subject><subject>Matching</subject><subject>Nonuniform</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Probes</subject><subject>Program verification (computers)</subject><subject>Training</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwzAMhisEEmPwAxCXSly4dMRpmjZHNBhM4mMSg2uUps7I1DYjaQ_8ezo27cDJlvW8tvVE0SWQCQARt8v57H1CCWQTylJGcziKRpBlPOGEwvGhh_Q0OgthTQhjwItR9LrwrlSlrW3orI7v0TjfqM66Nn5xFdYhHgbx9EvVNbYr267iBXrrdF8rH88btcL4cxgYq_9C59GJUXXAi30dRx-zh-X0KXl-e5xP754TnQraJQXNBRWFySuWZTlLKWBaKa5oVRZCkEyh4Rq1IAxLSPOSAzEaTckppZwYmo6jm93ejXffPYZONjZorGvVouuDhBwKQYExPqDX_9C16307fCeBi2I4D0U-ULCjtHcheDRy422j_I8EIreG5daw3BqWe8ND5mqXsYh44PMBFkSkv6ebdqw</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Smereka, Jonathon M.</creator><creator>Boddeti, Vishnu Naresh</creator><creator>Vijaya Kumar, B. V. K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><orcidid>https://orcid.org/0000-0001-9262-1143</orcidid></search><sort><creationdate>201509</creationdate><title>Probabilistic Deformation Models for Challenging Periocular Image Verification</title><author>Smereka, Jonathon M. ; Boddeti, Vishnu Naresh ; Vijaya Kumar, B. V. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-8279298f7d45574321e3da6a2db89905aef6cec904eb137b610fcefb622260f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Correlation</topic><topic>Deformable models</topic><topic>Deformation</topic><topic>Distortion</topic><topic>Face</topic><topic>Face recognition</topic><topic>Iris recognition</topic><topic>Matching</topic><topic>Nonuniform</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Probes</topic><topic>Program verification (computers)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smereka, Jonathon M.</creatorcontrib><creatorcontrib>Boddeti, Vishnu Naresh</creatorcontrib><creatorcontrib>Vijaya Kumar, B. V. K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Smereka, Jonathon M.</au><au>Boddeti, Vishnu Naresh</au><au>Vijaya Kumar, B. V. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Deformation Models for Challenging Periocular Image Verification</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2015-09</date><risdate>2015</risdate><volume>10</volume><issue>9</issue><spage>1875</spage><epage>1890</epage><pages>1875-1890</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>The periocular region as a biometric trait has recently gained considerable traction, especially under challenging scenarios where reliable iris information is not available for human authentication. In this paper, we consider the problem of one-to-one (1 : 1) matching of highly nonideal periocular images captured in-the-wild under unconstrained imaging conditions. Such images exhibit considerable appearance variations, including nonuniform illumination variations, motion and defocus blur, off-axis gaze, and nonstationary pattern deformations. To address these challenges, we propose periocular probabilistic deformation models (PPDMs) that: 1) reduce the image matching problem to matching local image regions and 2) approximate the periocular distortions by local patch level spatial translations whose relationships are modeled by a Gaussian Markov random field. Given a periocular image pair, we determine the distortion-tolerant similarity metric by regularizing local match scores by the maximum aposteriori probability estimate of the relative local deformations between them. Unlike the existing global periocular image matching techniques, by accounting for local image deformations in the periocular matching process, PPDM exhibits greater tolerance to pattern variations. We demonstrate the effectiveness of our model via extensive evaluation on a large number of in-the-wild periocular images. We find that PPDMs outperform many benchmark 1 : 1 image matching techniques (improving verification rates at 0.1% false accept rate by ~30% over previous work and ~40% when compared with the best baseline) in challenging scenarios leading to state-of-the-art verification performance on multiple real-world periocular data sets.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2015.2434271</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9262-1143</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2015-09, Vol.10 (9), p.1875-1890 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_proquest_journals_1698574187 |
source | IEEE Electronic Library (IEL) |
subjects | Correlation Deformable models Deformation Distortion Face Face recognition Iris recognition Matching Nonuniform Probabilistic methods Probability theory Probes Program verification (computers) Training |
title | Probabilistic Deformation Models for Challenging Periocular Image Verification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Deformation%20Models%20for%20Challenging%20Periocular%20Image%20Verification&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Smereka,%20Jonathon%20M.&rft.date=2015-09&rft.volume=10&rft.issue=9&rft.spage=1875&rft.epage=1890&rft.pages=1875-1890&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2015.2434271&rft_dat=%3Cproquest_RIE%3E3755373541%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698574187&rft_id=info:pmid/&rft_ieee_id=7109909&rfr_iscdi=true |