RSM and ANN modeling for electro-oxidation of simulated wastewater using CSTER
In this study, response surface methodology (RSM) and artificial neural network (ANN) were employed to develop prediction models for Acid Red 88 dye removal from synthetic wastewater using electro-oxidation. Experiments were carried out in a continuous stirred tank electrochemical reactor (CSTER) in...
Gespeichert in:
Veröffentlicht in: | Desalination and water treatment 2015-07, Vol.55 (6), p.1445-1452 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1452 |
---|---|
container_issue | 6 |
container_start_page | 1445 |
container_title | Desalination and water treatment |
container_volume | 55 |
creator | Saravanathamizhan, R. Harsha Vardhan, Kilaru Gnana Prakash, D. Balasubramanian, N. |
description | In this study, response surface methodology (RSM) and artificial neural network (ANN) were employed to develop prediction models for Acid Red 88 dye removal from synthetic wastewater using electro-oxidation. Experiments were carried out in a continuous stirred tank electrochemical reactor (CSTER) in once through approach using Ruthenium oxide-coated Titanium as anode and stainless steel sheet as cathode. The four operational parameters such as, effluent flow rate, initial dye concentration, current density, and pH, on chemical oxygen demand removal has been observed as a response. Experiments were conducted as per RSM of Box–Behnken design. The operating parameters were optimized and the models were developed using RSM and ANN. The ANN model of three hidden layers with two neuron networks, 4-2-2-2-1, matches well with the experimental observation. |
doi_str_mv | 10.1080/19443994.2014.925833 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1696927931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1944398624049063</els_id><sourcerecordid>3745923841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-5f67f1fe179dd99d4fefdc1a38a2447b995b8b39540c08c613588c9fd2cf00bc3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOOb-gRcBr1uTJm2TG2GM-QFzwjavQ5oPyeiambRO_70tVfDKc3MOh_d9D-cB4BqjFCOGbjGnlHBO0wxhmvIsZ4ScgcmwTghnxfmf-RLMYtyjvnJa5jSbgPVm-wxlo-F8vYYHr03tmjdofYCmNqoNPvGfTsvW-QZ6C6M7dLVsjYYnGVtz6scAuzh4FtvdcnMFLqyso5n99Cl4vV_uFo_J6uXhaTFfJYoi2ia5LUqLrcEl15pzTa2xWmFJmMwoLSvO84pVhOcUKcRUgUnOmOJWZ8oiVCkyBTdj7jH4987EVux9F5r-pMAFL3hWcoJ7FR1VKvgYg7HiGNxBhi-BkRjgiV94YoAnRni97W60mf6DD2eCiMqZRhntQs9EaO_-D_gGjAZ0YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696927931</pqid></control><display><type>article</type><title>RSM and ANN modeling for electro-oxidation of simulated wastewater using CSTER</title><source>Alma/SFX Local Collection</source><creator>Saravanathamizhan, R. ; Harsha Vardhan, Kilaru ; Gnana Prakash, D. ; Balasubramanian, N.</creator><creatorcontrib>Saravanathamizhan, R. ; Harsha Vardhan, Kilaru ; Gnana Prakash, D. ; Balasubramanian, N.</creatorcontrib><description>In this study, response surface methodology (RSM) and artificial neural network (ANN) were employed to develop prediction models for Acid Red 88 dye removal from synthetic wastewater using electro-oxidation. Experiments were carried out in a continuous stirred tank electrochemical reactor (CSTER) in once through approach using Ruthenium oxide-coated Titanium as anode and stainless steel sheet as cathode. The four operational parameters such as, effluent flow rate, initial dye concentration, current density, and pH, on chemical oxygen demand removal has been observed as a response. Experiments were conducted as per RSM of Box–Behnken design. The operating parameters were optimized and the models were developed using RSM and ANN. The ANN model of three hidden layers with two neuron networks, 4-2-2-2-1, matches well with the experimental observation.</description><identifier>ISSN: 1944-3986</identifier><identifier>ISSN: 1944-3994</identifier><identifier>EISSN: 1944-3986</identifier><identifier>DOI: 10.1080/19443994.2014.925833</identifier><language>eng</language><publisher>Abingdon: Elsevier Inc</publisher><subject>Acid Red 88 ; Artificial neural network ; Chemical oxygen demand ; Color removal ; Electro-oxidation ; Electrochemistry ; Flow rates ; Neural networks ; Oxidation ; Prediction models ; Response surface methodology ; Ruthenium ; Water treatment</subject><ispartof>Desalination and water treatment, 2015-07, Vol.55 (6), p.1445-1452</ispartof><rights>2014 Elsevier Inc.</rights><rights>2014 Balaban Desalination Publications. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-5f67f1fe179dd99d4fefdc1a38a2447b995b8b39540c08c613588c9fd2cf00bc3</citedby><cites>FETCH-LOGICAL-c404t-5f67f1fe179dd99d4fefdc1a38a2447b995b8b39540c08c613588c9fd2cf00bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Saravanathamizhan, R.</creatorcontrib><creatorcontrib>Harsha Vardhan, Kilaru</creatorcontrib><creatorcontrib>Gnana Prakash, D.</creatorcontrib><creatorcontrib>Balasubramanian, N.</creatorcontrib><title>RSM and ANN modeling for electro-oxidation of simulated wastewater using CSTER</title><title>Desalination and water treatment</title><description>In this study, response surface methodology (RSM) and artificial neural network (ANN) were employed to develop prediction models for Acid Red 88 dye removal from synthetic wastewater using electro-oxidation. Experiments were carried out in a continuous stirred tank electrochemical reactor (CSTER) in once through approach using Ruthenium oxide-coated Titanium as anode and stainless steel sheet as cathode. The four operational parameters such as, effluent flow rate, initial dye concentration, current density, and pH, on chemical oxygen demand removal has been observed as a response. Experiments were conducted as per RSM of Box–Behnken design. The operating parameters were optimized and the models were developed using RSM and ANN. The ANN model of three hidden layers with two neuron networks, 4-2-2-2-1, matches well with the experimental observation.</description><subject>Acid Red 88</subject><subject>Artificial neural network</subject><subject>Chemical oxygen demand</subject><subject>Color removal</subject><subject>Electro-oxidation</subject><subject>Electrochemistry</subject><subject>Flow rates</subject><subject>Neural networks</subject><subject>Oxidation</subject><subject>Prediction models</subject><subject>Response surface methodology</subject><subject>Ruthenium</subject><subject>Water treatment</subject><issn>1944-3986</issn><issn>1944-3994</issn><issn>1944-3986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOOb-gRcBr1uTJm2TG2GM-QFzwjavQ5oPyeiambRO_70tVfDKc3MOh_d9D-cB4BqjFCOGbjGnlHBO0wxhmvIsZ4ScgcmwTghnxfmf-RLMYtyjvnJa5jSbgPVm-wxlo-F8vYYHr03tmjdofYCmNqoNPvGfTsvW-QZ6C6M7dLVsjYYnGVtz6scAuzh4FtvdcnMFLqyso5n99Cl4vV_uFo_J6uXhaTFfJYoi2ia5LUqLrcEl15pzTa2xWmFJmMwoLSvO84pVhOcUKcRUgUnOmOJWZ8oiVCkyBTdj7jH4987EVux9F5r-pMAFL3hWcoJ7FR1VKvgYg7HiGNxBhi-BkRjgiV94YoAnRni97W60mf6DD2eCiMqZRhntQs9EaO_-D_gGjAZ0YA</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Saravanathamizhan, R.</creator><creator>Harsha Vardhan, Kilaru</creator><creator>Gnana Prakash, D.</creator><creator>Balasubramanian, N.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20150701</creationdate><title>RSM and ANN modeling for electro-oxidation of simulated wastewater using CSTER</title><author>Saravanathamizhan, R. ; Harsha Vardhan, Kilaru ; Gnana Prakash, D. ; Balasubramanian, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-5f67f1fe179dd99d4fefdc1a38a2447b995b8b39540c08c613588c9fd2cf00bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acid Red 88</topic><topic>Artificial neural network</topic><topic>Chemical oxygen demand</topic><topic>Color removal</topic><topic>Electro-oxidation</topic><topic>Electrochemistry</topic><topic>Flow rates</topic><topic>Neural networks</topic><topic>Oxidation</topic><topic>Prediction models</topic><topic>Response surface methodology</topic><topic>Ruthenium</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saravanathamizhan, R.</creatorcontrib><creatorcontrib>Harsha Vardhan, Kilaru</creatorcontrib><creatorcontrib>Gnana Prakash, D.</creatorcontrib><creatorcontrib>Balasubramanian, N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Desalination and water treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saravanathamizhan, R.</au><au>Harsha Vardhan, Kilaru</au><au>Gnana Prakash, D.</au><au>Balasubramanian, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RSM and ANN modeling for electro-oxidation of simulated wastewater using CSTER</atitle><jtitle>Desalination and water treatment</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>55</volume><issue>6</issue><spage>1445</spage><epage>1452</epage><pages>1445-1452</pages><issn>1944-3986</issn><issn>1944-3994</issn><eissn>1944-3986</eissn><abstract>In this study, response surface methodology (RSM) and artificial neural network (ANN) were employed to develop prediction models for Acid Red 88 dye removal from synthetic wastewater using electro-oxidation. Experiments were carried out in a continuous stirred tank electrochemical reactor (CSTER) in once through approach using Ruthenium oxide-coated Titanium as anode and stainless steel sheet as cathode. The four operational parameters such as, effluent flow rate, initial dye concentration, current density, and pH, on chemical oxygen demand removal has been observed as a response. Experiments were conducted as per RSM of Box–Behnken design. The operating parameters were optimized and the models were developed using RSM and ANN. The ANN model of three hidden layers with two neuron networks, 4-2-2-2-1, matches well with the experimental observation.</abstract><cop>Abingdon</cop><pub>Elsevier Inc</pub><doi>10.1080/19443994.2014.925833</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-3986 |
ispartof | Desalination and water treatment, 2015-07, Vol.55 (6), p.1445-1452 |
issn | 1944-3986 1944-3994 1944-3986 |
language | eng |
recordid | cdi_proquest_journals_1696927931 |
source | Alma/SFX Local Collection |
subjects | Acid Red 88 Artificial neural network Chemical oxygen demand Color removal Electro-oxidation Electrochemistry Flow rates Neural networks Oxidation Prediction models Response surface methodology Ruthenium Water treatment |
title | RSM and ANN modeling for electro-oxidation of simulated wastewater using CSTER |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RSM%20and%20ANN%20modeling%20for%20electro-oxidation%20of%20simulated%20wastewater%20using%20CSTER&rft.jtitle=Desalination%20and%20water%20treatment&rft.au=Saravanathamizhan,%20R.&rft.date=2015-07-01&rft.volume=55&rft.issue=6&rft.spage=1445&rft.epage=1452&rft.pages=1445-1452&rft.issn=1944-3986&rft.eissn=1944-3986&rft_id=info:doi/10.1080/19443994.2014.925833&rft_dat=%3Cproquest_cross%3E3745923841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696927931&rft_id=info:pmid/&rft_els_id=S1944398624049063&rfr_iscdi=true |