RSM and ANN modeling for electro-oxidation of simulated wastewater using CSTER

In this study, response surface methodology (RSM) and artificial neural network (ANN) were employed to develop prediction models for Acid Red 88 dye removal from synthetic wastewater using electro-oxidation. Experiments were carried out in a continuous stirred tank electrochemical reactor (CSTER) in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Desalination and water treatment 2015-07, Vol.55 (6), p.1445-1452
Hauptverfasser: Saravanathamizhan, R., Harsha Vardhan, Kilaru, Gnana Prakash, D., Balasubramanian, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1452
container_issue 6
container_start_page 1445
container_title Desalination and water treatment
container_volume 55
creator Saravanathamizhan, R.
Harsha Vardhan, Kilaru
Gnana Prakash, D.
Balasubramanian, N.
description In this study, response surface methodology (RSM) and artificial neural network (ANN) were employed to develop prediction models for Acid Red 88 dye removal from synthetic wastewater using electro-oxidation. Experiments were carried out in a continuous stirred tank electrochemical reactor (CSTER) in once through approach using Ruthenium oxide-coated Titanium as anode and stainless steel sheet as cathode. The four operational parameters such as, effluent flow rate, initial dye concentration, current density, and pH, on chemical oxygen demand removal has been observed as a response. Experiments were conducted as per RSM of Box–Behnken design. The operating parameters were optimized and the models were developed using RSM and ANN. The ANN model of three hidden layers with two neuron networks, 4-2-2-2-1, matches well with the experimental observation.
doi_str_mv 10.1080/19443994.2014.925833
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1696927931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1944398624049063</els_id><sourcerecordid>3745923841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-5f67f1fe179dd99d4fefdc1a38a2447b995b8b39540c08c613588c9fd2cf00bc3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOOb-gRcBr1uTJm2TG2GM-QFzwjavQ5oPyeiambRO_70tVfDKc3MOh_d9D-cB4BqjFCOGbjGnlHBO0wxhmvIsZ4ScgcmwTghnxfmf-RLMYtyjvnJa5jSbgPVm-wxlo-F8vYYHr03tmjdofYCmNqoNPvGfTsvW-QZ6C6M7dLVsjYYnGVtz6scAuzh4FtvdcnMFLqyso5n99Cl4vV_uFo_J6uXhaTFfJYoi2ia5LUqLrcEl15pzTa2xWmFJmMwoLSvO84pVhOcUKcRUgUnOmOJWZ8oiVCkyBTdj7jH4987EVux9F5r-pMAFL3hWcoJ7FR1VKvgYg7HiGNxBhi-BkRjgiV94YoAnRni97W60mf6DD2eCiMqZRhntQs9EaO_-D_gGjAZ0YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696927931</pqid></control><display><type>article</type><title>RSM and ANN modeling for electro-oxidation of simulated wastewater using CSTER</title><source>Alma/SFX Local Collection</source><creator>Saravanathamizhan, R. ; Harsha Vardhan, Kilaru ; Gnana Prakash, D. ; Balasubramanian, N.</creator><creatorcontrib>Saravanathamizhan, R. ; Harsha Vardhan, Kilaru ; Gnana Prakash, D. ; Balasubramanian, N.</creatorcontrib><description>In this study, response surface methodology (RSM) and artificial neural network (ANN) were employed to develop prediction models for Acid Red 88 dye removal from synthetic wastewater using electro-oxidation. Experiments were carried out in a continuous stirred tank electrochemical reactor (CSTER) in once through approach using Ruthenium oxide-coated Titanium as anode and stainless steel sheet as cathode. The four operational parameters such as, effluent flow rate, initial dye concentration, current density, and pH, on chemical oxygen demand removal has been observed as a response. Experiments were conducted as per RSM of Box–Behnken design. The operating parameters were optimized and the models were developed using RSM and ANN. The ANN model of three hidden layers with two neuron networks, 4-2-2-2-1, matches well with the experimental observation.</description><identifier>ISSN: 1944-3986</identifier><identifier>ISSN: 1944-3994</identifier><identifier>EISSN: 1944-3986</identifier><identifier>DOI: 10.1080/19443994.2014.925833</identifier><language>eng</language><publisher>Abingdon: Elsevier Inc</publisher><subject>Acid Red 88 ; Artificial neural network ; Chemical oxygen demand ; Color removal ; Electro-oxidation ; Electrochemistry ; Flow rates ; Neural networks ; Oxidation ; Prediction models ; Response surface methodology ; Ruthenium ; Water treatment</subject><ispartof>Desalination and water treatment, 2015-07, Vol.55 (6), p.1445-1452</ispartof><rights>2014 Elsevier Inc.</rights><rights>2014 Balaban Desalination Publications. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-5f67f1fe179dd99d4fefdc1a38a2447b995b8b39540c08c613588c9fd2cf00bc3</citedby><cites>FETCH-LOGICAL-c404t-5f67f1fe179dd99d4fefdc1a38a2447b995b8b39540c08c613588c9fd2cf00bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Saravanathamizhan, R.</creatorcontrib><creatorcontrib>Harsha Vardhan, Kilaru</creatorcontrib><creatorcontrib>Gnana Prakash, D.</creatorcontrib><creatorcontrib>Balasubramanian, N.</creatorcontrib><title>RSM and ANN modeling for electro-oxidation of simulated wastewater using CSTER</title><title>Desalination and water treatment</title><description>In this study, response surface methodology (RSM) and artificial neural network (ANN) were employed to develop prediction models for Acid Red 88 dye removal from synthetic wastewater using electro-oxidation. Experiments were carried out in a continuous stirred tank electrochemical reactor (CSTER) in once through approach using Ruthenium oxide-coated Titanium as anode and stainless steel sheet as cathode. The four operational parameters such as, effluent flow rate, initial dye concentration, current density, and pH, on chemical oxygen demand removal has been observed as a response. Experiments were conducted as per RSM of Box–Behnken design. The operating parameters were optimized and the models were developed using RSM and ANN. The ANN model of three hidden layers with two neuron networks, 4-2-2-2-1, matches well with the experimental observation.</description><subject>Acid Red 88</subject><subject>Artificial neural network</subject><subject>Chemical oxygen demand</subject><subject>Color removal</subject><subject>Electro-oxidation</subject><subject>Electrochemistry</subject><subject>Flow rates</subject><subject>Neural networks</subject><subject>Oxidation</subject><subject>Prediction models</subject><subject>Response surface methodology</subject><subject>Ruthenium</subject><subject>Water treatment</subject><issn>1944-3986</issn><issn>1944-3994</issn><issn>1944-3986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOOb-gRcBr1uTJm2TG2GM-QFzwjavQ5oPyeiambRO_70tVfDKc3MOh_d9D-cB4BqjFCOGbjGnlHBO0wxhmvIsZ4ScgcmwTghnxfmf-RLMYtyjvnJa5jSbgPVm-wxlo-F8vYYHr03tmjdofYCmNqoNPvGfTsvW-QZ6C6M7dLVsjYYnGVtz6scAuzh4FtvdcnMFLqyso5n99Cl4vV_uFo_J6uXhaTFfJYoi2ia5LUqLrcEl15pzTa2xWmFJmMwoLSvO84pVhOcUKcRUgUnOmOJWZ8oiVCkyBTdj7jH4987EVux9F5r-pMAFL3hWcoJ7FR1VKvgYg7HiGNxBhi-BkRjgiV94YoAnRni97W60mf6DD2eCiMqZRhntQs9EaO_-D_gGjAZ0YA</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Saravanathamizhan, R.</creator><creator>Harsha Vardhan, Kilaru</creator><creator>Gnana Prakash, D.</creator><creator>Balasubramanian, N.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20150701</creationdate><title>RSM and ANN modeling for electro-oxidation of simulated wastewater using CSTER</title><author>Saravanathamizhan, R. ; Harsha Vardhan, Kilaru ; Gnana Prakash, D. ; Balasubramanian, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-5f67f1fe179dd99d4fefdc1a38a2447b995b8b39540c08c613588c9fd2cf00bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acid Red 88</topic><topic>Artificial neural network</topic><topic>Chemical oxygen demand</topic><topic>Color removal</topic><topic>Electro-oxidation</topic><topic>Electrochemistry</topic><topic>Flow rates</topic><topic>Neural networks</topic><topic>Oxidation</topic><topic>Prediction models</topic><topic>Response surface methodology</topic><topic>Ruthenium</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saravanathamizhan, R.</creatorcontrib><creatorcontrib>Harsha Vardhan, Kilaru</creatorcontrib><creatorcontrib>Gnana Prakash, D.</creatorcontrib><creatorcontrib>Balasubramanian, N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Desalination and water treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saravanathamizhan, R.</au><au>Harsha Vardhan, Kilaru</au><au>Gnana Prakash, D.</au><au>Balasubramanian, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RSM and ANN modeling for electro-oxidation of simulated wastewater using CSTER</atitle><jtitle>Desalination and water treatment</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>55</volume><issue>6</issue><spage>1445</spage><epage>1452</epage><pages>1445-1452</pages><issn>1944-3986</issn><issn>1944-3994</issn><eissn>1944-3986</eissn><abstract>In this study, response surface methodology (RSM) and artificial neural network (ANN) were employed to develop prediction models for Acid Red 88 dye removal from synthetic wastewater using electro-oxidation. Experiments were carried out in a continuous stirred tank electrochemical reactor (CSTER) in once through approach using Ruthenium oxide-coated Titanium as anode and stainless steel sheet as cathode. The four operational parameters such as, effluent flow rate, initial dye concentration, current density, and pH, on chemical oxygen demand removal has been observed as a response. Experiments were conducted as per RSM of Box–Behnken design. The operating parameters were optimized and the models were developed using RSM and ANN. The ANN model of three hidden layers with two neuron networks, 4-2-2-2-1, matches well with the experimental observation.</abstract><cop>Abingdon</cop><pub>Elsevier Inc</pub><doi>10.1080/19443994.2014.925833</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-3986
ispartof Desalination and water treatment, 2015-07, Vol.55 (6), p.1445-1452
issn 1944-3986
1944-3994
1944-3986
language eng
recordid cdi_proquest_journals_1696927931
source Alma/SFX Local Collection
subjects Acid Red 88
Artificial neural network
Chemical oxygen demand
Color removal
Electro-oxidation
Electrochemistry
Flow rates
Neural networks
Oxidation
Prediction models
Response surface methodology
Ruthenium
Water treatment
title RSM and ANN modeling for electro-oxidation of simulated wastewater using CSTER
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RSM%20and%20ANN%20modeling%20for%20electro-oxidation%20of%20simulated%20wastewater%20using%20CSTER&rft.jtitle=Desalination%20and%20water%20treatment&rft.au=Saravanathamizhan,%20R.&rft.date=2015-07-01&rft.volume=55&rft.issue=6&rft.spage=1445&rft.epage=1452&rft.pages=1445-1452&rft.issn=1944-3986&rft.eissn=1944-3986&rft_id=info:doi/10.1080/19443994.2014.925833&rft_dat=%3Cproquest_cross%3E3745923841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696927931&rft_id=info:pmid/&rft_els_id=S1944398624049063&rfr_iscdi=true